-
Notifications
You must be signed in to change notification settings - Fork 76
/
setup.py
259 lines (220 loc) · 9.33 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
#!/usr/bin/env python
import glob
import platform
import subprocess
import os
# import shutil
from os import path
from setuptools import find_packages, setup
# from typing import List
import torch
from torch.utils.cpp_extension import CUDA_HOME, CUDNN_HOME, CppExtension, CUDAExtension
torch_ver = [int(x) for x in torch.__version__.split(".")[:2]]
assert torch_ver >= [1, 8], "Requires PyTorch >= 1.8"
def fetch_requirements():
with open("requirements.txt") as f:
reqs = f.read().strip().split("\n")
return reqs
def get_version():
this_dir = path.dirname(path.abspath(__file__))
if os.getenv("BUILD_VERSION"): # In CI
version = os.getenv("BUILD_VERSION")
else:
version_file_path = path.join(this_dir, "version.txt")
version = open(version_file_path, "r").readlines()[0].strip()
# The following is used to build release packages.
# Users should never use it.
suffix = os.getenv("SFAST_VERSION_SUFFIX", "")
version = version + suffix
if os.getenv("BUILD_NIGHTLY", "0") == "1":
from datetime import datetime
date_str = datetime.today().strftime("%y%m%d")
version = version + ".dev" + date_str
init_py_path = path.join(this_dir, "src", "sfast", "__init__.py")
init_py = open(init_py_path, "r").readlines()
new_init_py = [l for l in init_py if not l.startswith("__version__")]
new_init_py.append('__version__ = "{}"\n'.format(version))
with open(init_py_path, "w") as f:
f.write("".join(new_init_py))
return version
def get_cuda_version(cuda_dir) -> int:
nvcc_bin = "nvcc" if cuda_dir is None else cuda_dir + "/bin/nvcc"
raw_output = subprocess.check_output([nvcc_bin, "-V"],
universal_newlines=True)
output = raw_output.split()
release_idx = output.index("release") + 1
release = output[release_idx].split(".")
bare_metal_major = int(release[0])
bare_metal_minor = int(release[1][0])
assert bare_metal_minor < 100
return bare_metal_major * 100 + bare_metal_minor
def get_extensions():
this_dir = path.dirname(path.abspath(__file__))
extensions_dir = path.join(this_dir, "src", "sfast", "csrc")
include_dirs = [extensions_dir]
sources = glob.glob(path.join(extensions_dir, "**", "*.cpp"),
recursive=True)
# common code between cuda and rocm platforms, for hipify version [1,0,0] and later.
source_cuda = glob.glob(path.join(extensions_dir, "**", "*.cu"),
recursive=True)
source_cuda_rt = glob.glob(path.join(extensions_dir, "**", "*.cc"),
recursive=True)
extension = CppExtension
extra_compile_args = {"cxx": []}
library_dirs = []
libraries = []
define_macros = []
# if (torch.cuda.is_available()
# and ((CUDA_HOME is not None) or is_rocm_pytorch)):
# Skip the above useless check as we will always compile with CUDA support,
# and the CI might be running on CPU-only machines.
if platform.system() != "Darwin" and os.getenv("WITH_CUDA", "1") != "0":
assert CUDA_HOME is not None, "Cannot find CUDA installation. If you want to compile without CUDA, set `WITH_CUDA=0`."
cutlass_root = os.path.join(this_dir, "third_party", "cutlass")
cutlass_include = os.path.join(cutlass_root, "include")
if not os.path.exists(cutlass_root) or not os.path.exists(
cutlass_include):
raise RuntimeError("Cannot find cutlass. Please run "
"`git submodule update --init --recursive`.")
include_dirs.append(cutlass_include)
cutlass_tools_util_include = os.path.join(cutlass_root, "tools",
"util", "include")
include_dirs.append(cutlass_tools_util_include)
cutlass_examples_dual_gemm = os.path.join(cutlass_root, "examples", "45_dual_gemm")
include_dirs.append(cutlass_examples_dual_gemm)
extension = CUDAExtension
sources += source_cuda
sources += source_cuda_rt
# from torch.utils.cpp_extension import ROCM_HOME
# is_rocm_pytorch = (True if ((torch.version.hip is not None) and
# (ROCM_HOME is not None)) else False)
# if is_rocm_pytorch:
# assert torch_ver >= [1, 8], "ROCM support requires PyTorch >= 1.8!"
define_macros += [("WITH_CUDA", None)]
extra_compile_args["nvcc"] = [
"--use_fast_math",
"-U__CUDA_NO_HALF_OPERATORS__",
"-U__CUDA_NO_HALF_CONVERSIONS__",
"--extended-lambda",
"-D_ENABLE_EXTENDED_ALIGNED_STORAGE",
"-std=c++17",
"--ptxas-options=-O2",
"--ptxas-options=-allow-expensive-optimizations=true",
]
cuda_version = get_cuda_version(CUDA_HOME)
if cuda_version >= 1102:
extra_compile_args["nvcc"] += [
"--threads",
"2",
"--ptxas-options=-v",
]
if platform.system() == "Windows":
extra_compile_args["nvcc"] += [
"-Xcompiler",
"/Zc:lambda",
"-Xcompiler",
"/Zc:preprocessor",
"-Xcompiler",
"/Zc:__cplusplus", # cannot call non-constexpr function "cutlass::const_min"
]
nvcc_flags_env = os.getenv("NVCC_FLAGS", "")
if nvcc_flags_env != "":
extra_compile_args["nvcc"].extend(nvcc_flags_env.split(" "))
if torch_ver < [1, 7]:
# supported by https://github.com/pytorch/pytorch/pull/43931
CC = os.environ.get("CC", None)
if CC is not None:
extra_compile_args["nvcc"].append("-ccbin={}".format(CC))
if CUDNN_HOME is None:
try:
# Try to use the bundled version of CUDNN with PyTorch installation.
# This is also used in CI.
from nvidia import cudnn
except ImportError:
cudnn = None
if cudnn is not None:
cudnn_dir = os.path.dirname(cudnn.__file__)
print("Using CUDNN from {}".format(cudnn_dir))
include_dirs.append(os.path.join(cudnn_dir, "include"))
# Hope PyTorch knows how to link it correctly.
# We only need headers because PyTorch should have
# linked the actual library file. (But why not work on Windows?)
# Make Windows CI happy (unresolved external symbol)
# Why Linux does not need this?
if platform.system() == "Windows":
library_dirs.append(os.path.join(cudnn_dir, "lib"))
library_dirs.append(os.path.join(cudnn_dir, "lib", "x64"))
try:
from nvidia import cublas
except ImportError:
cublas = None
if cublas is not None:
cublas_dir = os.path.dirname(cublas.__file__)
print("Using CUBLAS from {}".format(cublas_dir))
include_dirs.append(os.path.join(cublas_dir, "include"))
# Hope PyTorch knows how to link it correctly.
# We only need headers because PyTorch should have
# linked the actual library file. (But why not work on Windows?)
# Make Windows CI happy (unresolved external symbol)
# Why Linux does not need this?
if platform.system() == "Windows":
library_dirs.append(os.path.join(cublas_dir, "lib"))
library_dirs.append(os.path.join(cublas_dir, "lib", "x64"))
if platform.system() == "Windows":
libraries.append("cudnn")
libraries.append("cublas")
libraries.append("cublasLt")
else:
print("Compiling without CUDA support")
ext_modules = [
extension(
"sfast._C",
sorted(sources),
include_dirs=[os.path.abspath(p) for p in include_dirs],
define_macros=define_macros,
extra_compile_args=extra_compile_args,
library_dirs=[os.path.abspath(p) for p in library_dirs],
libraries=libraries,
)
]
return ext_modules
setup(
name="stable-fast",
version=get_version(),
author="Cheng Zeyi",
url="https://github.com/chengzeyi/stable-fast",
description=
"Stable Fast is an ultra lightweight performance optimization framework"
" for Hugging Fase diffuser pipelines.",
package_dir={
'': 'src',
},
packages=find_packages(where='src'),
# include submodules in third_party
python_requires=">=3.7",
install_requires=fetch_requirements(),
extras_require={
# optional dependencies, required by some features
"all": [],
# dev dependencies. Install them by `pip install 'sfast[dev]'`
"dev": [
"pytest",
"prettytable",
"Pillow",
"opencv-python",
"numpy",
],
"diffusers": [
"diffusers>=0.19.0",
"transformers",
],
"xformers": [
"xformers>=0.0.20",
],
"triton": [
"triton>=2.1.0",
],
},
ext_modules=get_extensions(),
cmdclass={"build_ext": torch.utils.cpp_extension.BuildExtension},
)