This page provides basic tutorials about the usage of SimVP. For installation instructions, please see Install.
You can perform single GPU training and testing with tools/non_dist_train.py
and tools/non_dist_test.py
. We provide descriptions of some essential arguments.
python tools/non_dist_train.py \
--dataname ${DATASET_NAME} \
--method ${METHOD_NAME} \
--config_file ${CONFIG_FILE} \
--ex_name ${EXP_NAME} \
--auto_resume \
--batch_size ${BATCH_SIZE} \
--lr ${LEARNING_RATE} \
Description of arguments:
--dataname (-d)
: The name of dataset, default to bemmnist
.--method (-m)
: The name of the video prediction method to train or test, default to beSimVP
.--config_file (-c)
: The path of a model config file, which will provide detailed settings for a video prediction method.--ex_name
: The name of the experiment under theres_dir
. Default to beDebug
.--auto_resume
: Whether to automatically resume training when the experiment was interrupted.--batch_size (-b)
: Training batch size, default to 16.--lr
: The basic training learning rate, defaults to 0.001.
An example of single GPU training with SimVP+gSTA on Moving MNIST dataset.
bash tools/prepare_data/download_mmnist.sh
python tools/non_dist_train.py -d mmnist --lr 1e-3 -c ./configs/mmnist/simvp/SimVP_gSTA.py --ex_name mmnist_simvp_gsta
An example of single GPU testing with SimVP+gSTA on Moving MNIST dataset.
python tools/non_dist_test.py -d mmnist -c configs/mmnist/simvp/SimVP_gSTA.py --ex_name mmnist_simvp_gsta