-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathresnet.py
145 lines (103 loc) · 3.98 KB
/
resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
from __future__ import absolute_import
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial
from torch.autograd import Variable
__all__ = ['resnet']
def conv3x3(in_planes, out_planes, stride=1):
"3x3 convolution with padding"
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, cfg, stride=1, downsample=None):
# cfg should be a number in this case
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, cfg, stride)
self.bn1 = nn.BatchNorm2d(cfg)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(cfg, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
def downsample_basic_block(x, planes):
x = nn.AvgPool2d(2,2)(x)
zero_pads = torch.Tensor(
x.size(0), planes - x.size(1), x.size(2), x.size(3)).zero_()
if isinstance(x.data, torch.cuda.FloatTensor):
zero_pads = zero_pads.cuda()
out = Variable(torch.cat([x.data, zero_pads], dim=1))
return out
class ResNet(nn.Module):
def __init__(self, depth, n_classes, cfg=None):
super(ResNet, self).__init__()
# Model type specifies number of layers for CIFAR-10 model
assert (depth - 2) % 6 == 0, 'depth should be 6n+2'
n = (depth - 2) // 6
block = BasicBlock
if cfg == None:
cfg = [[16]*n, [32]*n, [64]*n]
cfg = [item for sub_list in cfg for item in sub_list]
self.cfg = cfg
self.inplanes = 16
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, padding=1,
bias=False)
self.bn1 = nn.BatchNorm2d(16)
self.relu = nn.ReLU(inplace=True)
self.layer1 = self._make_layer(block, 16, n, cfg=cfg[0:n])
self.layer2 = self._make_layer(block, 32, n, cfg=cfg[n:2*n], stride=2)
self.layer3 = self._make_layer(block, 64, n, cfg=cfg[2*n:3*n], stride=2)
self.avgpool = nn.AvgPool2d(8)
num_classes = n_classes
self.linear = nn.Linear(64 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, cfg, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = partial(downsample_basic_block, planes=planes*block.expansion)
layers = []
layers.append(block(self.inplanes, planes, cfg[0], stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes, cfg[i]))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x) # 32x32
x_l1 = self.layer1(x) # 32x32
x_l2 = self.layer2(x_l1) # 16x16
x1 = self.layer3(x_l2) # 8x8
x = self.avgpool(x1)
x = x.view(x.size(0), -1)
x = self.linear(x)
return x,x1, x_l1, x_l2
def resnet(**kwargs):
"""
Constructs a ResNet model.
"""
return ResNet(**kwargs)
if __name__ == '__main__':
net = resnet(depth=56)
x=Variable(torch.FloatTensor(16, 3, 32, 32))
y= net(x)