-
Notifications
You must be signed in to change notification settings - Fork 1
/
hf_models.py
82 lines (74 loc) · 2.88 KB
/
hf_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import torch
from transformers import (
AutoTokenizer,
AutoModelForCausalLM
)
from typing import List, Union
class HfModel:
def __init__(
self,
model_id: str,
quantization_config=None,
device_map="auto",
load_in_4bit: bool = False,
load_in_8bit: bool = False,
**kwargs,
):
self.model_id = model_id
self.quantization_config = quantization_config
self.device_map = device_map
self.model_loaded = False
self._load_model_and_tokenizer(load_in_4bit, load_in_8bit, **kwargs)
def _load_model_and_tokenizer(
self, load_in_4bit: bool = False, load_in_8bit: bool = False, **kwargs
):
try:
self.model = AutoModelForCausalLM.from_pretrained(
self.model_id,
load_in_4bit=load_in_4bit,
load_in_8bit=load_in_8bit,
device_map=self.device_map,
quantization_config=self.quantization_config,
**kwargs
)
self.tokenizer = AutoTokenizer.from_pretrained(
self.model_id,
trust_remote_code=True,
)
self.tokenizer.add_special_tokens({"pad_token": "[PAD]"})
self.tokenizer.pad_token = self.tokenizer.eos_token
self.tokenizer.padding_side = "right"
# Suppress fast_tokenizer warning
self.tokenizer.deprecation_warnings["Asking-to-pad-a-fast-tokenizer"] = True
self.model_loaded = True
except Exception as e:
print(f"Error loading the model: \n{e}")
self.model = None
self.tokenizer = None
self.model_loaded = False
def generate(
self,
message: Union[str, List[str]],
max_new_tokens: int = 1000,
temperature: float = 0.9,
top_p: float = 0.7,
num_return_sequences: int = 1,
device="auto",
) -> List[str]:
assert self.model_loaded, "Model and tokenizer not loaded properly"
# Generation Config: this is the new standard way to do it in HF
generation_config = self.model.generation_config
generation_config.max_new_tokens = max_new_tokens
generation_config.temperature = temperature
generation_config.top_p = top_p
generation_config.num_return_sequences = num_return_sequences
generation_config.pad_token_id = self.tokenizer.eos_token_id
generation_config.eos_token_id = self.tokenizer.eos_token_id
encoding = self.tokenizer(message, return_tensors="pt").to(device)
with torch.inference_mode():
outputs = self.model.generate(
input_ids=encoding.input_ids,
attention_mask=encoding.attention_mask,
generation_config=generation_config,
)
return self.tokenizer.batch_decode(outputs, skip_special_tokens=True)