forked from google-research/big_transfer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbit_common.py
97 lines (88 loc) · 3.76 KB
/
bit_common.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
# Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
# coding: utf-8
import argparse
import logging
import logging.config
import os
import bit_hyperrule
def argparser(known_models):
parser = argparse.ArgumentParser(description="Fine-tune BiT-M model.")
parser.add_argument("--name", required=True,
help="Name of this run. Used for monitoring and checkpointing.")
parser.add_argument("--model", choices=list(known_models),
help="Which variant to use; BiT-M gives best results.")
parser.add_argument("--logdir", required=True,
help="Where to log training info (small).")
parser.add_argument("--bit_pretrained_dir", default='.',
help="Where to search for pretrained BiT models.")
parser.add_argument("--dataset", choices=list(bit_hyperrule.known_dataset_sizes.keys()),
help="Choose the dataset. It should be easy to add your own! "
"Don't forget to set --datadir if necessary.")
parser.add_argument("--examples_per_class", type=int, default=None,
help="For the few-shot variant, use this many examples "
"per class only.")
parser.add_argument("--examples_per_class_seed", type=int, default=0,
help="Random seed for selecting examples.")
parser.add_argument("--batch", type=int, default=512,
help="Batch size.")
parser.add_argument("--batch_split", type=int, default=1,
help="Number of batches to compute gradient on before updating weights.")
parser.add_argument("--base_lr", type=float, default=0.003,
help="Base learning-rate for fine-tuning. Most likely default is best.")
parser.add_argument("--eval_every", type=int, default=None,
help="Run prediction on validation set every so many steps."
"Will always run one evaluation at the end of training.")
return parser
def setup_logger(args):
"""Creates and returns a fancy logger."""
# return logging.basicConfig(level=logging.INFO, format="[%(asctime)s] %(message)s")
# Why is setting up proper logging so !@?#! ugly?
os.makedirs(os.path.join(args.logdir, args.name), exist_ok=True)
logging.config.dictConfig({
"version": 1,
"disable_existing_loggers": False,
"formatters": {
"standard": {
"format": "%(asctime)s [%(levelname)s] %(name)s: %(message)s"
},
},
"handlers": {
"stderr": {
"level": "INFO",
"formatter": "standard",
"class": "logging.StreamHandler",
"stream": "ext://sys.stderr",
},
"logfile": {
"level": "DEBUG",
"formatter": "standard",
"class": "logging.FileHandler",
"filename": os.path.join(args.logdir, args.name, "train.log"),
"mode": "a",
}
},
"loggers": {
"": {
"handlers": ["stderr", "logfile"],
"level": "DEBUG",
"propagate": True
},
}
})
logger = logging.getLogger(__name__)
logger.flush = lambda: [h.flush() for h in logger.handlers]
logger.info(args)
return logger