

Fclass version dated March 23, 2002 6:00 am

Prof. W. Kahan

Work in Progress Subject to Change

 Page 1/6

Fclass: a Proposed Classification of Standard Floating-Point Operands

Abstract

Occasionally some programs will have to discover and manipulate attributes of floating-point
numbers and their standard formats. This document offers names for those attributes. They
need support from programming languages. Normally, attributes like byte-widths of floating-
point variables’

formats

 are needed at compile-time; attributes such as signs of floating-point
variables’

values

 are needed at run-time. Both kinds of attributes are discussed here; the
values’ attributes are revealed by a function here called “Fclass” intended to simplify and
speed up programs that must filter out peculiar floating-point operands like NaNs before
performing arithmetic upon them.

Contents

Abstract page 1
Compile-time Attributes 1

Widths of Named IEEE 754 Formats 1
Run-time Attributes 2

Proposed Names for Attributes of Floating-Point Operands 3
The Function Fclass 3

Examples of Fclass’s Use 4
SignBit 4
Implementation Details 4
Appendix: Silent Order Predicates 5

14 Predicates Suffice 5
Appendix: What is

oddf

 good for? 6

Compile-time Attributes

To use

EQUIVALENCE

 declarations in

FORTRAN

, or

struct

 and

union

 declarations in C,
programmers who assemble data-structures with fields that vary at run-time must discover the
byte-widths of floating-point formats first. Most formats specified by IEEE Standard 754 for
Binary Floating-Point Arithmetic have standard widths known in advance regardless of
platform; but the

Extended

 formats’ widths differ on different hardware and sometimes for
different compilers on the same hardware. This is why compilers must provide a compile-time
function Width(X) or Sizeof(X) that returns the width in bytes of memory occupied by
floating-point variables of the same declared type as X . (Register-widths are not relevant
here.) The Width(…) function returns integer values …

Name of IEEE 754 Format Width in Bytes

Single-Precision (

float

) 4
Single-Extended

≥

 6
Double-Precision (

double

) 8
Double-Extended (

long double

) 10, 12 or 16
Quadruple-Precision (

long double

) 16

(

Doubled-double

 is NOT standardized) (16)

This document was created with FrameMaker 4 0 4

Fclass version dated March 23, 2002 6:00 am

Prof. W. Kahan

Work in Progress Subject to Change

 Page 2/6

This tabulated list will lengthen as other floating-point formats come into use, if they ever do.

Languages must provide locutions that permit Width(…) to figure in structure declarations that
are portable in the sense that a program recompiled elsewhere will still run correctly even if the
data-structures it creates may not be read correctly when copied verbatim from one computer’s
memory to another. Of course, such programs are somewhat like suicide:– something to be
discouraged but not prevented. Still, the necessary locutions, like conditional compilation,
have many important applications.

Another attribute needed at compile-time is the “Little-Endian” or “Big-Endian” affiliation of
a floating-point format. That is one of a few attributes, like whether the significand’s leading
bit is explicit (as it is for all current implementations of Double-Extended formats) or not
(Single, Double and Quadruple precisions), needed for bit-twiddling of floating-point
numbers. This practice too is something best discouraged but not prevented, especially not if a
language fails to supply built-in run-time functions of the kind to be discussed next. Bit-
twiddling is forced upon a programmer who must implement her own versions of these
functions either because they are lacking in her chosen language or because its versions run too
slowly. Bit-twiddling is also necessary in software that tests floating-point hardware upon
specially patterned operands created using only integer hardware. The specifications of fields
for sign, exponent and significand are the province of another standard, IEEE 1596.5 on Data
Communication, so they need not be explored here.

Run-Time Attributes

Programs frequently filter operands before performing operations that may malfunction on
peculiar values; examples include subnormal numbers and zeros that may be troublesome
divisors, and infinities that spoil matrix multiplications, and signed zeros and infinities that
mark the ends of open or closed intervals for Interval Arithmetic. At issue now are not the
comparisons against numerical thresholds accomplished by the usual order predicates like
“ x < y ” but the filtering out of peculiar operands like NaNs that might complicate such
comparisons. When filtering is simple and fast enough it may well be preferred to the detection
of malfunctions after they occur in lengthy formulas.

Speed is crucial here. It is achieved, when filtering requires more than one test per floating-
point operand, by moving the tests from floating-point to integer and logical hardware, and by
consolidating several tests into a few with the aid of precalculated masks whenever possible.
This is possible when the tests concern attributes like the ones tabulated below … .

The nine attributes named below can be associated in our minds with nine bits each 0 or 1
according to whether the operand in question falls into the category described. These bits may
well be copied from tag bits already generated when an operand is loaded into a tagged floating-
point register. So long as they are generated fast, their provenance doesn’t matter. Note that an
operand can cause more than one bit to be set to 1 only if its sign bit or its last bit is 1 .

Fclass version dated March 23, 2002 6:00 am

Prof. W. Kahan

Work in Progress Subject to Change

 Page 3/6

(The last “

notf

” should not occur for operands loaded from memory nor for operands encountered by applications
programs; it is an attribute to be encountered perhaps exclusively by operating systems software.)

The Function Fclass(x)

A function Fclass(x) is intended to return a bit-string that conveys the attributes of its floating-
point operand x . In this document, Fclass(x) is treated as a

generic

 function determined by
the format of x as well as its value; some languages will require functions named Fclass_(x) in
which the underscore “_” is replaced by a suffix like ...

and so on. All versions of Fclass(x), generic or not, return the same bit-string for the same
argument-value x regardless of format except for

finn

,

subn

 and

oddf

, which depend upon
x’s format.

The bit-string returned by Fclass(x) may be typed linguistically as an integer by some
languages, or as a type of its own kind by better-protected languages. What matters most is
that Fclass(x) return a quick classification of the value of its floating-point argument x that
lends itself to logical masking in order to form predicates that test for infinities, NaNs, signed
zeros, subnormal numbers, ..., and combinations thereof selected by masks of Fclass’ type
built up at compile-time to speed the test demanded by the program. Of course, mask words
deserve names like “signm”, “sNaNm”, “qNaNm”, … that programmers can combine by
ANDing and ORing without having to memorize hexadecimal strings.

Here are examples in

Matlab

’s syntax, treating any nonzero integer as Boolean TRUE, zero
as FALSE, and using & for AND , | for OR , ~ for NOT , and == for EQUALS :

Proposed Name Attribute of Floating-Point Operand

sign

Sign bit, either 0 (+) or 1 (–) .

qNaN

A “quiet” NaN ; it does not trap.

sNaN

A “signaling” NaN ; it traps when used.

infy

An infinity, either +

∞

 or –

∞

 .

finn

A finite nonzero number, not subnormal.

subn

A subnormal nonzero number.

zero

Either +0.0 or –0.0 .

oddf

The last significant bit stored is 1 .

notf

Not a (standard) floating-point number nor NaN.

Suffix Operand Format

s Single-Precision
sx Single-Extended
d Double-Precision
dx Double-Extended
q Quadruple-Precision

(dd) (Doubled-double)

Fclass version dated March 23, 2002 6:00 am

Prof. W. Kahan

Work in Progress Subject to Change

 Page 4/6

 isNaN(x) (sNaNm | qNaNm) & Fclass(x)
 isFinite(x) ~((infym | sNaNm | qNaNm) & Fclass(x)) or
 (zerom | finnm | subnm) & Fclass(x)
 isInfinite(x) infym & Fclass(x)
 isPlusInfinity(x) infym == Fclass(x)
 isSubnormal(x) subnm & Fclass(x)
 isNormal(x) (zero | finn) & Fclass(x)
 isMinusZero(x) Fclass(x) == (signm | zerom)
 isPlusZero(x) Fclass(x) == zerom
 x == 0.0 zerom & Fclass(x)
 notZeroNorOdd(x) ~((zerom | oddfm) & Fclass(x))

Note that these run fast as logical/integer operations because the compound masks are composed
at compile-time.

 SignBit

If Fclass(x) is a two-byte integer with

sign

 as its leading bit, then one shift suffices to bring
out the sign bit as an integer:

 SignBit(x) := LogicalShift(–15, Fclass(x)) yields 0 or 1 ;
–SignBit(x) := IntegerShift(–15, Fclass(x)) yields 0 or –1 .

If the value of Fclass is not a word like that, the compiler writer should supply a fast inlined
implementation of SignBit(x) because it is useful only if it is fast, and then it is useful in

Sturm Sequence

 calculations in tight loops that count real roots of polynomial equations and
isolate real eigenvalues of symmetric matrices.

Implementation Details

Implementors of floating-point hardware or firmware will find eight of Fclass(x)’s bits worth
keeping along with perhaps more bits in a Tag field associated with each floating-point
register. The Tag field’s function is to speed up operations upon operands already classified as
a by-product of their insertion into the registers. In conjunction with two extra exponent bits,
the Tag field can also serve to speed the handling of over/underflowed intermediate results and
subnormal operands without recourse to traps; that is a story for another day.

An implementation of Fclass(x) in software can resort exclusively to integer and logical
operations. It must be done this way on

Pentium

-like architectures whose floating-point
registers forget where their contents came from, obscuring finn, subn and oddf.

At present, the uses contemplated for Fclass preponderantly use it just once per argument,
embedding it in a boolean expression like the ones illustrated above in

Matlab

’s syntax. So
long as this pattern of use persists, little is lost by implementing Fclass the way the

Itanium

architecture does: it combines the sensing of Fclass(x) and the masking in one operation
performed in its floating-point registers. Thus, the expressions illustrated above could be
converted at compile-time into single instructions containing the appropriate mask.

Fclass version dated March 23, 2002 6:00 am

Prof. W. Kahan

Work in Progress Subject to Change

 Page 5/6

However, future uses may well test Fclass(x) with different masks at different times for the
same argument x . This possibility deserves exploration; would Interval and Complex
Arithmetic codes benefit if values of Fclass for two arguments could be stored and combined
later when needed?

Whether Fclass is implemented as a separate operation or is mixed with a mask at every
invocation will not matter to the programmer with an efficiently optimizing compiler except that
repeated references to Fclass(x) with the same x may be rather slower on some architectures
than on others.

Appendix: Silent Order Predicates

Fclass(x) can help compilers support silent order predicates on those machines whose order
predicates all trap or signal INVALID OPERATION when an operand is NaN . The six
conventional comparison predicates, plus a seventh, in three common notations are ...

Math: =

≠

 ? <

≤

≥

 >
C:

 == != ? < <= >= >

Fortran: .EQ. .NE. .UN. .LT. .LE. .GE. .GT.

The last four of these order predicates were specified in IEEE 754 to signal an INVALID
OPERATION exception (trap or raise its flag) and deliver a .FALSE. value when NaN was
compared with itself or anything else. The signal was deemed necessary to protect legacy
software recompiled for hardware with NaNs though designed for old arithmetics without
them. A user who noticed the signal could perhaps trace it back to an event that had previously
gone unnoticed or did not occur on older hardware. Protection was intentionally imperfect
because the two predicates “NaN .EQ. NaN” (specified .FALSE.) and “NaN .NE. NaN”
(specified .TRUE.) did not signal; they served to detect a NaN in a language that lacked the
word “NaN”. Unfortunately they are “optimized” away too often by compilers that replace
“ x .NE. x ” by “ .FALSE. ” at compile time; this is why “ isNaN(x) ” should be used instead.

(The UNORDERED predicate “ x ? y ” or “ x .UN. y ” above is silently .TRUE. just when
at least one of of x and y is NaN . Strictly speaking, this predicate is mathematically
superfluous since there is no need for NaNs in mathematical proofs, which take

trichotomy

for granted. Only computers, unable to stop and revise their own programs in the light of
unforseen circumstances, need NaNs and an UNORDERED predicate.)

Nowadays programmers aware of NaNs’ peculiarities need silent order predicates that never
signal. In the syntax I prefer for C , these should augment the predicates listed above thus:

No comparison predicate whose symbol begins with “!” would ever signal.

(I have yet to need more than the fourteen predicates tabulated here.)

Math: =

≠

? !? <> <

≤

≥

>

C with signal:

<> < <= >= >

C silent:

== != ? !? !=? !>= !> !< !<=

Fclass version dated March 23, 2002 6:00 am

Prof. W. Kahan

Work in Progress Subject to Change

 Page 6/6

Note that silent “ x !> y ” differs from signaling “ !(x > y) ” when either x or y can be
NaN . However, “ x != y ” matches “ !(x == y) ” and similarly for !? since none of these ever
signal.

Whatever their syntax, all the silent predicates should run fast too. This is why a fast Fclass
should be used to prevent traps by filtering operands before the hardware’s signaling predicate is
applied to get the desired silent result.

Appendix: What is

oddf

 good for?

It may speed up some implementations of multi-double arithmetic. Or it may be superfluous.
The subject deserves further investigation. Like the INEXACT exception, it is an idea that
most current practitioners of floating-point arithmetic have never considered though, in a past
now so distant that almost nobody alive remembers it, such things used to be part of the trickery
in which skilled practitioners exulted. For instance, if ~(oddfm & Fclass(x)) then 3.0*x
suffers no roundoff, which fact figures in a program that solves cubic equations.

