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Fclass:   a Proposed Classification of Standard Floating-Point Operands

 

Abstract

 

Occasionally some programs will have to discover and manipulate attributes of floating-point 
numbers and their standard formats.  This document offers names for those attributes.  They 
need support from programming languages.  Normally,  attributes like byte-widths of floating-
point variables’  

 

formats

 

  are needed at compile-time;  attributes such as signs of floating-point 
variables’  

 

values

 

  are needed at run-time.  Both kinds of attributes are discussed here;  the 
values’ attributes are revealed by a function here called  “Fclass”  intended to simplify and 
speed up programs that must filter out peculiar floating-point operands like  NaNs  before 
performing arithmetic upon them.
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Compile-time Attributes

 

To use  

 

EQUIVALENCE

 

  declarations in  

 

FORTRAN

 

,  or  

 

struct

 

 and  

 

union

 

  declarations in  C,  
programmers who assemble data-structures with fields that vary at run-time must discover the 
byte-widths of floating-point formats first.  Most formats specified by  IEEE Standard 754 for 
Binary Floating-Point Arithmetic  have standard widths known in advance regardless of 
platform;  but the  

 

Extended

 

  formats’ widths differ on different hardware and sometimes for 
different compilers on the same hardware.  This is why compilers must provide a compile-time 
function   Width(X)   or   Sizeof(X)   that returns the width in bytes of memory occupied by 
floating-point variables of the same declared type as  X .  (Register-widths are not relevant 
here.)  The  Width(…)  function returns integer values …

 

Name of IEEE 754 Format Width in Bytes

 

Single-Precision        (

 

float

 

) 4
Single-Extended

 

≥

 

 6
Double-Precision       (

 

double

 

) 8
Double-Extended       (

 

long double

 

) 10,  12  or  16
Quadruple-Precision   (

 

long double

 

) 16

 

( 

 

Doubled-double

 

  is NOT standardized ) ( 16 )
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This tabulated list will lengthen as other floating-point formats come into use,  if they ever do.

Languages must provide locutions that permit  Width(…)  to figure in structure declarations that 
are portable in the sense that a program recompiled elsewhere will still run correctly even if the 
data-structures it creates may not be read correctly when copied verbatim from one computer’s 
memory to another.  Of course,  such programs are somewhat like suicide:–  something to be 
discouraged but not prevented.  Still,  the necessary locutions,  like conditional compilation,  
have many important applications.

Another attribute needed at compile-time is the  “Little-Endian”  or  “Big-Endian”  affiliation of 
a floating-point format.  That is one of a few attributes,  like whether the significand’s leading 
bit is explicit  (as it is for all current implementations of  Double-Extended  formats)  or not  
(Single,  Double  and  Quadruple  precisions),  needed for bit-twiddling of floating-point 
numbers.  This practice too is something best discouraged but not prevented,  especially not if a 
language fails to supply built-in run-time functions of the kind to be discussed next. Bit-
twiddling is forced upon a programmer who must implement her own versions of these 
functions either because they are lacking in her chosen language or because its versions run too 
slowly.  Bit-twiddling is also necessary in software that tests floating-point hardware upon 
specially patterned operands created using only integer hardware.  The specifications of fields 
for sign,  exponent and significand are the province of another standard,  IEEE 1596.5  on  Data 
Communication,  so they need not be explored here.

 

Run-Time Attributes

 

Programs frequently filter operands before performing operations that may malfunction on 
peculiar values;  examples include subnormal numbers and zeros that may be troublesome 
divisors,  and infinities that spoil matrix multiplications,  and signed zeros and infinities that 
mark the ends of open or closed intervals for  Interval Arithmetic.  At issue now are not the 
comparisons against numerical thresholds accomplished by the usual order predicates like  
“ x < y ”  but the filtering out of peculiar operands like  NaNs  that might complicate such 
comparisons. When filtering is simple and fast enough it may well be preferred to the detection 
of malfunctions after they occur in lengthy formulas.

Speed is crucial here.  It is achieved,  when filtering requires more than one test per floating-
point operand,  by moving the tests from floating-point to integer and logical hardware,  and by 
consolidating several tests into a few with the aid of precalculated masks whenever possible.  
This is possible when the tests concern attributes like the ones tabulated below … .

The nine attributes named below can be associated in our minds with nine bits each  0  or  1  
according to whether the operand in question falls into the category described.  These bits may 
well be copied from tag bits already generated when an operand is loaded into a tagged floating-
point register.  So long as they are generated fast, their provenance doesn’t matter.  Note that an 
operand can cause more than one bit to be set to  1  only if its sign bit or its last bit is  1 .
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(The last  “

 

notf

 

”  should not occur for operands loaded from memory nor  for operands encountered by applications 
programs;  it is an attribute  to be encountered perhaps exclusively by operating systems software.)

 

The Function  Fclass(x)

 

A function  Fclass(x)  is intended to return a bit-string that conveys the attributes of its floating-
point operand  x .  In this document,  Fclass(x)  is treated as a  

 

generic

 

  function determined by 
the format of x  as well as its value;  some languages will require functions named Fclass_(x)  in 
which the underscore  “_”  is replaced by a suffix like ...

and so on.  All versions of  Fclass(x),  generic or not,  return the same bit-string for the same 
argument-value  x  regardless of format except for  

 

finn

 

,  

 

subn

 

  and  

 

oddf

 

,  which depend upon  
x’s  format.

The bit-string returned by  Fclass(x)  may be typed linguistically as an integer by some 
languages,  or as a type of its own kind by better-protected languages.  What matters most is 
that  Fclass(x)  return a quick classification of the value of its floating-point argument  x  that 
lends itself to logical masking in order to form predicates that test for  infinities,  NaNs,  signed 
zeros,  subnormal numbers,  ...,  and combinations thereof selected by masks of  Fclass’  type 
built up at compile-time to speed the test demanded by the program.  Of course,  mask words 
deserve names like  “signm”,  “sNaNm”,  “qNaNm”,  …  that programmers can combine by  
ANDing  and  ORing  without having to memorize hexadecimal strings.

Here are examples in  

 

Matlab

 

’s  syntax,  treating any nonzero integer as  Boolean TRUE,  zero 
as  FALSE,  and using  &  for  AND ,  |  for  OR ,  ~  for  NOT ,  and  ==  for  EQUALS :

Proposed Name Attribute of Floating-Point Operand

 

sign

 

Sign bit,  either  0 (+)  or  1 (–) .

 

qNaN

 

A “quiet” NaN ;  it does not trap.

 

sNaN

 

A “signaling” NaN ;  it traps when used.

 

infy

 

An infinity,  either  +

 

∞

 

  or  –

 

∞

 

 .

 

finn

 

A finite nonzero number,  not subnormal.

 

subn

 

A subnormal nonzero number.

 

zero

 

Either  +0.0  or  –0.0 .

 

oddf

 

The last significant bit stored is  1 .

 

notf

 

Not a (standard) floating-point number nor  NaN.

 

Suffix Operand Format

 

s Single-Precision
sx Single-Extended
d Double-Precision
dx Double-Extended
q Quadruple-Precision

 

( dd ) ( Doubled-double )
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   isNaN(x)             (sNaNm | qNaNm) & Fclass(x)
   isFinite(x)          ~( (infym | sNaNm | qNaNm) & Fclass(x) )   or
                           (zerom | finnm | subnm) & Fclass(x)
   isInfinite(x)        infym & Fclass(x)
   isPlusInfinity(x)    infym == Fclass(x)
   isSubnormal(x)       subnm & Fclass(x)
   isNormal(x)          ( zero | finn ) & Fclass(x)
   isMinusZero(x)       Fclass(x) == (signm | zerom)
   isPlusZero(x)        Fclass(x) == zerom
     x == 0.0           zerom & Fclass(x)
   notZeroNorOdd(x)     ~( (zerom | oddfm) & Fclass(x) )

 

Note that these run fast as logical/integer operations because the compound masks are composed 
at compile-time.

 

 SignBit

 

If  Fclass(x)  is a two-byte integer with  

 

sign

 

  as its leading bit,  then one shift suffices to bring 
out the sign bit as an integer:

  SignBit(x) :=  LogicalShift(–15,  Fclass(x)) yields  0  or  1 ;
–SignBit(x) :=  IntegerShift(–15,  Fclass(x)) yields  0  or  –1 .

If the value of  Fclass  is not a word like that,  the compiler writer should supply a fast inlined 
implementation of  SignBit(x)  because it is useful only if it is fast,  and then it is useful in  

 

Sturm Sequence

 

  calculations in tight loops that count real roots of polynomial equations and 
isolate real eigenvalues of symmetric matrices.

 

Implementation Details

 

Implementors of floating-point hardware or firmware will find eight of  Fclass(x)’s  bits worth 
keeping along with perhaps more bits in a  Tag  field associated with each floating-point 
register.  The  Tag  field’s function is to speed up operations upon operands already classified as 
a by-product of their insertion into the registers.  In conjunction with two extra exponent bits,  
the  Tag  field can also serve to speed the handling of over/underflowed intermediate results and 
subnormal operands without recourse to traps;  that is a story for another day.

An implementation of  Fclass(x)  in software can resort exclusively to integer and logical 
operations.  It must be done this way on  

 

Pentium

 

-like architectures whose floating-point 
registers forget where their contents came from,  obscuring  finn,  subn  and  oddf.

At present,  the uses contemplated for  Fclass  preponderantly use it just once per argument,  
embedding it in a boolean expression like the ones illustrated above in  

 

Matlab

 

’s  syntax.  So 
long as this pattern of use persists,  little is lost by implementing  Fclass  the way the  

 

Itanium

 

  
architecture does:  it combines the sensing of  Fclass(x)  and the masking in one operation 
performed in its floating-point registers.  Thus,  the expressions illustrated above could be 
converted at compile-time into single instructions containing the appropriate mask.
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However,  future uses may well test  Fclass(x)  with different masks at different times for the 
same argument  x .  This possibility deserves exploration;  would  Interval  and  Complex 
Arithmetic  codes benefit if values of  Fclass  for two arguments could be stored and combined 
later when needed?

Whether  Fclass  is implemented as a separate operation or is mixed with a mask at every 
invocation will not matter to the programmer with an efficiently optimizing compiler except that 
repeated references to  Fclass(x)  with the same  x  may be rather slower on some architectures 
than on others.

 

Appendix:  Silent Order Predicates

 

Fclass(x)  can help compilers support silent order predicates on those machines whose order 
predicates all trap or signal  INVALID OPERATION  when an operand is  NaN .  The six 
conventional comparison predicates,  plus a seventh,  in three common notations are ...

Math:   =   

 

≠

 

   ?   <   

 

≤

 

  

 

≥

 

  >
C:

 

 ==  !=  ?  <  <=  >=  >

 

Fortran: .EQ. .NE. .UN. .LT. .LE. .GE. .GT.

The last four of these order predicates were specified in  IEEE 754 to signal an  INVALID 
OPERATION  exception  (trap or raise its flag)  and deliver a  .FALSE.  value  when  NaN  was 
compared with itself or anything else.  The signal was deemed necessary to protect legacy 
software recompiled for hardware with  NaNs  though designed for old arithmetics without 
them.  A user who noticed the signal could perhaps trace it back to an event that had previously 
gone unnoticed or did not occur on older hardware.  Protection was intentionally imperfect 
because the two predicates  “NaN .EQ. NaN”  (specified  .FALSE.)  and  “NaN .NE. NaN”  
(specified  .TRUE.)  did not signal;  they served to detect a  NaN  in a language that lacked the 
word  “NaN”.  Unfortunately they are  “optimized”  away too often by compilers that replace  
“ x .NE. x ”  by  “ .FALSE. ”  at compile time;  this is why  “ isNaN(x) ”  should be used instead.

(The  UNORDERED  predicate  “ x ? y ”  or  “ x .UN. y ”  above is silently  .TRUE.  just when 
at least one of of  x  and  y  is  NaN .  Strictly speaking,  this predicate is mathematically 
superfluous since there is no need for  NaNs  in mathematical proofs,  which take  

 

trichotomy

 

  
for granted.  Only computers,  unable to stop and revise their own programs in the light of 
unforseen circumstances,  need  NaNs  and an  UNORDERED  predicate.)

Nowadays programmers aware of  NaNs’  peculiarities need silent order predicates that never 
signal.    In the syntax I prefer for  C ,  these should augment the predicates listed above thus:

 

No comparison predicate whose symbol begins with  “!”  would ever signal.

 

(I have yet to need more than the fourteen predicates tabulated here.)

Math: =

 

≠

 

? !? <> <

 

≤

 

≥

 

>

C  with signal:

 

<> < <= >= >

 

C  silent:

 

== != ? !? !=? !>= !> !< !<=
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Note that silent  “ x !> y ”  differs from signaling  “ !(x > y) ”  when either  x  or  y  can be  
NaN .  However,  “ x != y ”  matches “ !(x == y) ”  and similarly for  !?  since none of these ever 
signal.

Whatever their syntax,  all the silent predicates should run fast too. This is why a fast  Fclass  
should be used to prevent traps by filtering operands before the hardware’s signaling predicate is 
applied to get the desired silent result.

 

Appendix:  What is  

 

oddf

 

  good for?

 

It may speed up some implementations of multi-double arithmetic.  Or it may be superfluous.  
The subject deserves further investigation.  Like the  INEXACT  exception,  it is an idea that 
most current practitioners of floating-point arithmetic have never considered though,  in a past 
now so distant that almost nobody alive remembers it,  such things used to be part of the trickery 
in which skilled practitioners exulted.  For instance,  if  ~(oddfm & Fclass(x))  then  3.0*x  
suffers no roundoff,  which fact figures in a program that solves cubic equations.


