
Damian McGuckin Chapel Predicates October 2021

1. Comparison Predicates
The IEEE 754 Standard [1,2,3] defines multiple comparison predicates for floating point
numbers. Thesix conventional comparison predicates are<, >, <=, >=, ==, and !=.
These are familiar to those who use one of the many programming languages designed
with readability in mind.To those who use Fortran, they would be more familiar with the
mneumonics.lt., .gt., .le., .ge., .eq., and .ne.. Except for those last two predicates,
equality and inequality, i.e. == and!= respectively , these predicates signal (or raise) an
IEEE 754INVALID exception when aNot-a-Number or NaN is compared with itself or
anything else. Where a predicate (such as== or !=) does signal (or raise) an exception, it
is termedsignalling, and when it does not, it is termedsilent. Further predicates are
defined by IEEE 754, many of which are silent when working with NaNs. In C, they are
provided through the far more clumsy mechanism of macros, like islessgreater(3) or
isless(3). Somelanguages provide none of these extra predicates.

These predicates have been discussed at length [4,5] after the standard was produced by
the driving force behind the IEEE 754 standard, Professor William Kahan. In a 2002
paper [5], he tabulated a subset of the standard’s predicates on the basis that he had"yet
to need more than the fourteen tabulated"therein. Aclose replica of that follows.

In Kahan(2002) yes yes yes yes yes NO yes yes yes yes
Math: = ≠ ? !? <> ! <> < ≤ ≥ >
C signalling: - - - - <> ... < <= >= >
C silent: == != ? !? !=? ... !>= !> !< !<=

Some may argue that the subset is too strict.To expand this subset somewhat, an extra
column is added to the table for theneither-less-nor-greater-thanpredicate, this addition
also making it more obvious from where Kahan got the!=? symbol seen above

2. Chapel Implementation
Chapel is ideally placed to provide the first complete, symbolic, implementation of this
Kahan subset of this most practically useful subset of IEEE 754 comparison predicates.
To achieve this, the above table has been replicated and augmented as follows:

1. TheIEEE 754 standard usage a single question mark (?) to query whether two
numbers wereunorderedwith respect to each other has been replaced with the??
(double question mark) symbol instead.This resolves the conflict presented by
Chapel’s own usage of a single? for other purposes. The net result of this choice
is that theunordered/ordered predicate pair of

?? / !?

is now perfectlyanti-symmetric with theequality/inequality predicate pair of

== / !=

This would seem like an improvement or at the very least, a justification of??.

2. The extra column added forbeing neither less than nor greater thanwill be
populated with symbols from the IEEE 754 standards of 1985 [1] and 2008 [2].
These symbols have disappeared in the latest release [3] of that standard for
reasons which are currently being investigated.

But this one change and one addition are the only variations to Kahan’s list of predicates.

Draft 0.1 - 1 -

Damian McGuckin Chapel Predicates October 2021

Note that during the 1990s, Kahan used the symbol!>=< as theunordered predicate,
although by 2002 he had reverted back to using a single question mark. The negation of
that, i.e. an ordered predicate using the symbol>=< seems hard to find, but its existence
is assumed - somewhere.

Using the two points mentioned earlier, and incorporating Kahan’s own variation on the
(un)ordered predicates, the earlier table can now be written as:

New Column: no no no no no yes no no no no
Math: = ≠ ? !? <> ! <> < ≤ ≥ >
Chapel signalling: - - - >=< <> =? < <= >= >
Chapel silent: == != ?? !? !=? !<> !>= !> !< !<=
Alternative silent: - ?<> !>=< - - - ?>= ?> ?< ?<=

The additional column is thesimply equalor neither less than nor greater thanpredicate.
On the rule that no signalling predicate should begin with an exclamation mark, it uses
the IEEE 754 suggested=? symbol for the signalling version of that predicate, and
proposes the Math symbol itself for its silent negation. Thisalso gives a obvious hint as
to where Kahan came up with the symbol!=? for the silent negation of <>.

Solely for completeness of documentation, some alternative symbols are shown for the
quiet predicates, their origin being IEEE 754 standards documents except for>=< and
!>=< which come from Kahan.However, at least to the author of this document, the
former group have too many question marks and Kahan’s pair looks too bulky to be
practical, making them, in the author’s opinion, impractical for implementation in
Chapel. Includedin that list is the predicate?<> that the standard suggests could be an
alternative to the!= inequality predicate, something the author considers of no benefit.

3. Optimization
Note that Chapel must never optimize away expressions like

x != x
x == x

and should rely on the underlying predicate to do its job as per the IEEE 754 standard.

4. References
[1] IEEE Standard for Binary Floating-Point Arithmetic,(1985), in ANSI/IEEE Std

754-1985, pp.1-20, 12 October 1985,

[2] IEEE Standard for Floating-Point Arithmetic, (2008), in IEEE Std 754-2008,
pp.1-70, 29 August 2008,

[3] IEEE Standard for Floating-Point Arithmetic, (2019), in IEEE Std 754-2019
(Revision of IEEE 754-2008), pp.1-84, 22 July 2019,

[4] W Kahan (1997),Lecture Notes on the Status of IEEE Standard 754 for Binary
Floating-Point Arithmetic,EECS, University of California at Berkeley,
See:http://www.cs.berkeley.edu/˜wkahan/ieee754status/ieee754.ps

[5] W Kahan (2002),Fclass: a Proposed Classification of Standard Floating-Point
Operands,EECS, University of California at Berkeley,
See:http://www.cs.berkeley.edu/˜wkahan/ieee754status/Fclass.pdf

Draft 0.1 - 2 -

