forked from linzhiqiu/t2v_metrics
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenai_image_ranking.py
301 lines (262 loc) · 14 KB
/
genai_image_ranking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
# Ranking on GenAI-Bench-Image (with 800 prompt x 9 images) using a specific model
# Example scripts to run:
# python genai_image_ranking.py --model clip-flant5-xxl --gen_model DALLE_3
# python genai_image_ranking.py --model clip-flant5-xxl --gen_model SDXL_Base
# python genai_image_ranking.py --model openai:ViT-L-14-336 --gen_model DALLE_3
# python genai_image_ranking.py --model openai:ViT-L-14-336 --gen_model SDXL_Base
# python genai_image_ranking.py --model pickscore-v1 --gen_model DALLE_3
# python genai_image_ranking.py --model pickscore-v1 --gen_model SDXL_Base
# python genai_image_ranking.py --model image-reward-v1 --gen_model DALLE_3
# python genai_image_ranking.py --model image-reward-v1 --gen_model SDXL_Base
# python genai_image_ranking.py --model clip-flant5-xl --gen_model DALLE_3
# python genai_image_ranking.py --model clip-flant5-xl --gen_model SDXL_Base
# python genai_image_ranking.py --model llava-v1.5-13b --gen_model DALLE_3
# python genai_image_ranking.py --model llava-v1.5-13b --gen_model SDXL_Base
import argparse
import os
import t2v_metrics
from dataset import GenAIBench_Ranking
import json
import torch
import numpy as np
def config():
parser = argparse.ArgumentParser()
parser.add_argument("--root_dir", default="./datasets", type=str,
help='Root directory for saving datasets.')
parser.add_argument("--cache_dir", default=t2v_metrics.constants.HF_CACHE_DIR, type=str)
parser.add_argument("--device", default="cuda", type=str)
parser.add_argument("--batch_size", default=1, type=int)
parser.add_argument("--model", default="clip-flant5-xxl", type=str)
parser.add_argument("--question", default=None, type=str)
parser.add_argument("--answer", default=None, type=str)
parser.add_argument("--result_dir", default="./ranking_results", type=str)
# Ranking specific
parser.add_argument("--gen_model", default="DALLE_3", type=str, choices=['DALLE_3', 'SDXL_Base'])
return parser.parse_args()
def compute_scores_per_skill(scores, tags, images_to_prompt_idx):
prompt_num = scores.shape[0]
skill_vqascores = {}
for tag in tags:
tag_indices = tags[tag]
tag_score = []
for idx in range(prompt_num):
prompt_idx = images_to_prompt_idx[idx]
if prompt_idx in tag_indices:
tag_score.append(scores[idx].item())
tag_score = np.array(tag_score)
skill_vqascores[tag] = tag_score.mean()
skill_vqascores['all'] = scores.mean().item()
return skill_vqascores
def rerank_human_scores(dataset, rerank_idx_by_9, rerank_idx_by_3, items_name='images'):
items = getattr(dataset, items_name)
human_scores_raw = [items[idx]['human_score'] for idx in range(len(items))]
human_scores_raw = np.array(human_scores_raw)
human_scores_per_prompt = human_scores_raw.reshape((int(len(items)/9), 9))
# ------------------- Baseline -------------------
human_scores_random = human_scores_per_prompt.mean(axis=1)
# ----------------- Rerank by 9 -----------------
human_scores_rerank_by9 = human_scores_per_prompt[np.arange(len(human_scores_per_prompt)), rerank_idx_by_9]
human_oracle_by9 = np.max(human_scores_per_prompt, axis=1)
# ----------------- Rerank by 3 -----------------
prompt_num = human_scores_per_prompt.shape[0]
human_oracle_by3 = []
human_scores_rerank_by3 = []
for prompt_idx in range(prompt_num):
human_score = human_scores_per_prompt[prompt_idx]
human_tops = []
rerank_tops = []
for img_idx in range(0,9,3):
human_top = np.max(human_score[img_idx:img_idx+3])
human_tops.append(human_top)
rerank_top = human_score[rerank_idx_by_3[prompt_idx][img_idx//3]]
rerank_tops.append(rerank_top)
human_tops = np.array(human_tops)
human_oracle_by3.append(np.mean(human_tops))
rerank_tops = np.array(rerank_tops)
human_scores_rerank_by3.append(np.mean(rerank_tops))
human_oracle_by3 = np.array(human_oracle_by3)
human_scores_rerank_by3 = np.array(human_scores_rerank_by3)
human_scores = {'random': human_scores_random, 'rerank_by_9': human_scores_rerank_by9, 'rerank_by_3': human_scores_rerank_by3, 'human_oracle_by9': human_oracle_by9, 'human_oracle_by3': human_oracle_by3}
return human_scores, human_scores_per_prompt
def compute_top1_acc_skill(vqascores, human_scores, tags, images_to_prompt_idx):
prompt_num = vqascores.shape[0]
skill_acc = {}
skill_set = ["basic", "advanced", "all"]
for skill in skill_set:
tag_indices = tags[skill]
count = 0
for i in range(prompt_num):
prompt_idx = images_to_prompt_idx[i]
if prompt_idx in tag_indices:
vqa_top_idx = torch.argmax(vqascores[i])
human_top_idx = np.where(human_scores[i] == np.max(human_scores[i]))
human_top_idx = list(human_top_idx[0])
if vqa_top_idx in human_top_idx:
count += 1
acc = count / len(tag_indices)
skill_acc[skill] = acc
return skill_acc
def compute_top1_acc_group_skill(vqascores, human_scores, tags, images_to_prompt_idx):
prompt_num = vqascores.shape[0]
skill_acc_group = {}
skill_set = ["basic", "advanced", "all"]
for skill in skill_set:
tag_indices = tags[skill]
count = 0
total = 0
for i in range(prompt_num):
prompt_idx = images_to_prompt_idx[i]
if prompt_idx in tag_indices:
for img_idx in range(0,9,3):
vqa_top_idx = torch.argmax(vqascores[i][img_idx:img_idx+3])
human_top_idx = np.where(human_scores[i][img_idx:img_idx+3] == np.max(human_scores[i][img_idx:img_idx+3]))
human_top_idx = list(human_top_idx[0])
total +=1
if vqa_top_idx in human_top_idx:
count += 1
acc = count / total
skill_acc_group[skill] = acc
return skill_acc_group
def show_performance(args, skill_vqascores, skill_human_scores):
# assert skill_vqascores[0].keys() == skill_human_scores[0].keys()
tag_groups = {
'basic': ['attribute', 'scene', 'spatial relation', 'action relation', 'part relation', 'basic'],
'advanced': ['counting', 'comparison', 'differentiation', 'negation', 'universal', 'advanced'],
'overall': ['basic', 'advanced', 'all']}
score_names = ['metric', 'human']
for tag_group in tag_groups:
for score_name in score_names:
# print vqascores and human scores in a table
print(f"Tag Group: {tag_group} ({score_name} performance)")
tag_header = f"{'Model':<30}" + " ".join([f"{tag:<20}" for tag in tag_groups[tag_group]])
print(tag_header)
if score_name == 'human':
for human_method in skill_human_scores.keys():
detailed_scores = [f"{skill_human_scores[human_method][tag]:.2f}" for tag in tag_groups[tag_group]]
detailed_scores = " ".join([f"{score:<20}" for score in detailed_scores])
model_scores = f"{args.gen_model} {human_method:25} " + detailed_scores
print(model_scores)
elif score_name == 'metric':
for metric_method in skill_vqascores.keys():
detailed_scores = [f"{skill_vqascores[metric_method][tag]:.2f}" for tag in tag_groups[tag_group]]
detailed_scores = " ".join([f"{score:<20}" for score in detailed_scores])
model_scores = f"{args.gen_model} {metric_method:25} " + detailed_scores
print(model_scores)
print()
print()
def show_ranking_performance(args, scores, score_name='accuracy'):
# assert skill_vqascores[0].keys() == skill_human_scores[0].keys()
tag_groups = {
'basic': ['attribute', 'scene', 'spatial relation', 'action relation', 'part relation', 'basic'],
'advanced': ['counting', 'comparison', 'differentiation', 'negation', 'universal', 'advanced'],
'overall': ['basic', 'advanced', 'all']}
for tag_group in tag_groups:
# print vqascores and human scores in a table
print(f"Tag Group: {tag_group} ({score_name} performance)")
tag_header = f"{'Model':<30}" + " ".join([f"{tag:<20}" for tag in tag_groups[tag_group]])
print(tag_header)
detailed_scores = [f"{scores[tag]:.2f}" for tag in tag_groups[tag_group]]
detailed_scores = " ".join([f"{score:<20}" for score in detailed_scores])
model_scores = f"{args.gen_model:<30}" + detailed_scores
print(model_scores)
print()
print()
def show_top1_acc(args, top1_acc):
tag_groups = {'overall': ['basic', 'advanced', 'all']}
acc_methods = ['rerank_by_9', 'rerank_by_3']
for tag_group in tag_groups:
print(f"Tag Group: {tag_group} (Top 1 Accuracy)")
tag_header = f"{'Model':<30}" + " ".join([f"{tag:<20}" for tag in tag_groups[tag_group]])
print(tag_header)
for i in range(len(acc_methods)):
detailed_scores = [f"{top1_acc[i][tag]:.2f}" for tag in tag_groups[tag_group]]
detailed_scores = " ".join([f"{score:<20}" for score in detailed_scores])
model_scores = f"{args.gen_model} {acc_methods[i]:25} " + detailed_scores
print(model_scores)
print()
print()
def show_win_rate(args, win_rates):
win_groups = {'overall': ['win', 'tie', 'lose']}
# win_methods = win_rates.keys()
for win_group in win_groups:
print(f"Win Rate: {win_group}")
win_header = f"{'Model (VS random DALLE3)':<30}" + " ".join([f"{tag:<20}" for tag in win_groups[win_group]])
print(win_header)
for win_method in win_rates.keys():
detailed_scores = [f"{win_rates[win_method][tag]:.2f}" for tag in win_groups[win_group]]
detailed_scores = " ".join([f"{score:<20}" for score in detailed_scores])
model_scores = f"{args.gen_model} {win_method:25} " + detailed_scores
print(model_scores)
print()
def main():
args = config()
if not os.path.exists(args.root_dir):
os.makedirs(args.root_dir)
result_dir = f"{args.result_dir}/{args.gen_model}"
if not os.path.exists(result_dir):
os.makedirs(result_dir)
dataset = GenAIBench_Ranking(gen_model=args.gen_model, root_dir=args.root_dir)
print(f"{args.gen_model} ranking dataset loaded successfully.")
print(f"Dataset size: {len(dataset)}")
result_path = f"{result_dir}/{args.model}.pt"
if os.path.exists(result_path):
print(f"Result file {result_path} already exists. Skipping.")
scores = torch.load(result_path)
else:
print(f"Computing scores for {args.model}.")
score_func = t2v_metrics.get_score_model(model=args.model, device=args.device, cache_dir=args.cache_dir)
kwargs = {}
if args.question is not None:
print(f"Using question template: {args.question}")
kwargs['question_template'] = args.question
if args.answer is not None:
print(f"Using answer template: {args.answer}")
kwargs['answer_template'] = args.answer
print(f"Performance of {args.model}.")
scores = score_func.batch_forward(dataset, batch_size=args.batch_size, **kwargs).cpu()
torch.save(scores, result_path)
# ------------------- Load skill tags -------------------
images_to_prompt_idx = getattr(dataset, 'images_to_prompt_idx')
prompt_num = int(len(dataset) / 9)
tag_file = os.path.join(dataset.root_dir, 'genai_skills.json')
tags = json.load(open(tag_file))
tags.update({'all': images_to_prompt_idx})
# ------------------- Compute Rerank idx (by 9) -------------------
scores_per_prompt = torch.reshape(scores, (int(len(dataset) / 9), 9)) # [800, 9]
our_scores_random = torch.mean(scores_per_prompt, dim=1) # [800]
rerank_idx_by_9 = torch.argmax(scores_per_prompt, dim=1) # [800]
our_scores_rerank = torch.max(scores_per_prompt, dim=1).values
our_scores = {'random': our_scores_random, 'rerank_by_9': our_scores_rerank}
# ------------------- Compute Rerank idx (by 3) -------------------
rerank_idx_by_3 = []
for prompt_idx in range(prompt_num):
idx_img = []
for img_idx in range(0,9,3):
vqa_top_idx = torch.argmax(scores_per_prompt[prompt_idx][img_idx:img_idx+3])
idx_img.append(vqa_top_idx+img_idx)
rerank_idx_by_3.append(idx_img)
rerank_idx_by_3 = torch.tensor(rerank_idx_by_3) # [800, 3]
# ------------------- Load and rerank human scores -------------------
# human_scores keys: random, rerank_by_9, rerank_by_3, human_oracle_by9, human_oracle_by3, shape: [800]
# human_scores_per_prompt shape: [800, 9]
human_scores, human_scores_per_prompt = rerank_human_scores(dataset, rerank_idx_by_9, rerank_idx_by_3)
# ------------------- Compute Scores on each skill-------------------
metric_scores_skill = {}
human_scores_skill = {}
for key in our_scores.keys():
metric_scores_skill.update({key: compute_scores_per_skill(our_scores[key], tags, images_to_prompt_idx)})
for key in human_scores.keys():
human_scores_skill.update({key: compute_scores_per_skill(human_scores[key], tags, images_to_prompt_idx)})
show_performance(args, metric_scores_skill, human_scores_skill)
# ------------------- Top 1 Accuracy -------------------
top1_acc_rerank = compute_top1_acc_skill(scores_per_prompt, human_scores_per_prompt, tags, images_to_prompt_idx)
top1_acc_rerank_group = compute_top1_acc_group_skill(scores_per_prompt, human_scores_per_prompt, tags, images_to_prompt_idx)
top1_acc =[top1_acc_rerank, top1_acc_rerank_group]
print("Metric model:", args.model)
show_top1_acc(args, top1_acc)
# ------------------- Pairwise Performance -------------------
results = dataset.evaluate_scores(scores)
ranking_results = compute_scores_per_skill(results['ranking_accuracy'], tags, images_to_prompt_idx)
show_ranking_performance(args, ranking_results)
if __name__ == "__main__":
main()