-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_whole.py
340 lines (301 loc) · 16.9 KB
/
train_whole.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
from __future__ import print_function, division
from dataset import Train_Dataset, Valid_Dataset
from torch.utils.data import DataLoader
import shutil
import argparse
from losses import calc_loss, dice_loss, threshold_predictions_v, threshold_predictions_p, Dice_soft, cutout, compute_dice_score
from ploting import plot_kernels, LayerActivations, input_images, plot_grad_flow
from metrics import *
from util import *
import segmentation_models_pytorch as smp
import math
import rasterio
from rasterio.windows import Window
from torch.utils.data import Dataset, DataLoader
from tqdm import tqdm
import cv2
import warnings
import torch.nn.functional as F
from tqdm.contrib import tzip
from Net_BiT_Seg import Net, RGB
from Net_Swin_up import Net1
from Net_CSWin_Seg import Net2
from Net_Swin_Seg import Net3
from Net_HILA_BiT_Seg import Net4
from Net_BiT_DASeg import Net5
from Net_HRViT_Seg import Net6
from Net_pvt_v2 import Net7
from Net_CoaT import Net8
from lavaz_loss import lovasz_hinge2
import torch.cuda.amp as amp
is_amp = True
warnings.filterwarnings("ignore")
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
def main(args):
# load args
input_channel = args.input_channel
output_class = args.output_class
image_resolution = args.image_resolution
epoch = args.epochs
num_workers = args.num_workers
device = args.device
batch_size = args.batch_size
backbone = args.backbone
network = args.network
initial_lr = args.initial_learning_rate
use_scheduler = args.use_scheduler
finetune = args.finetune
finetune_path = args.finetune_path
K = args.folds
fold = args.k_th_fold
use_carveMix = args.use_carveMix
train_dataset_path = args.train_dataset_path
train_gt_dataset_path = args.train_gt_dataset_path
train_edge_dataset_path = args.train_edge_dataset_path
valid_dataset_path = args.valid_dataset_path
valid_gt_dataset_path = args.valid_gt_dataset_path
New_folder = args.saved_model_path
read_pred = args.visualize_of_data_aug_path
weights_path = args.weights_path
weights = args.weights
weights1 = args.weights1
# print params
train_on_gpu = torch.cuda.is_available()
print('*' * 20)
print('Peng Lab')
print('Network : ' + network)
print(f'Fold {fold} / {K}')
print(f'Training on GPU {device}')
cuda = "cuda:" + str(device)
device = torch.device(cuda if train_on_gpu else "cpu")
print('image_size = ' + str(image_resolution))
print('batch_size = ' + str(batch_size))
print('epoch = ' + str(epoch))
print('*' * 20)
# initial params
valid_loss_min = np.Inf
best_metric = 0
best_loss = 99999
lossT, lossL = [], []
lossL.append(np.inf)
lossT.append(np.inf)
epoch_valid = epoch - 2
n_iter, i_valid, model_test = 1, 0, 0
# set pin_memory
pin_memory = False
if train_on_gpu:
pin_memory = True
# select backbone and network
if network == "Linknet":
model_test = smp.Linknet(encoder_name=backbone, encoder_weights='imagenet', in_channels=input_channel,
classes=output_class)
if network == "DeepLabV3Plus":
model_test = smp.DeepLabV3Plus(encoder_name=backbone, encoder_weights='imagenet', in_channels=input_channel,
classes=output_class)
if network == "FPN":
model_test = smp.FPN(encoder_name=backbone, encoder_weights='imagenet', in_channels=input_channel,
classes=output_class)
if network == "PAN":
model_test = smp.PAN(encoder_name=backbone, encoder_weights='imagenet', in_channels=input_channel,
classes=output_class)
if network == "PSPNet":
model_test = smp.PSPNet(encoder_name=backbone, encoder_weights='imagenet', in_channels=input_channel,
classes=output_class)
if network == "Unet":
model_test = smp.Unet(encoder_name=backbone, encoder_weights='imagenet', in_channels=input_channel,
classes=output_class)
if network == "unext101":
model_test = UneXt50()
if network == "SegFormer":
model_test = Net()
if network == "upernet":
model_test = Net1()
if network == "CSWin":
model_test = Net2()
if network == "SwinSegFormer":
model_test = Net3()
if network == "HILASegFormer":
model_test = Net4()
if network == "DASegFormer":
model_test = Net5()
if network == "HRViT":
model_test = Net6()
if network == "PVT":
model_test = Net7()
if network == "CoaT":
model_test = Net8()
if network == "SegFormer" or network == "upernet" or network == "CSWin" or network == "SwinSegFormer" or network == "HILASegFormer" or network == "DASegFormer" or network == "PVT" or network == "CoaT":
model_test.load_pretrain()
if finetune:
print("Start finetune!")
model_test.load_state_dict(torch.load(finetune_path))
model_test.to(device)
criterion = nn.BCEWithLogitsLoss()
metric = Dice_soft()
rgb = RGB()
train_list = []
train_list_GT = []
train_list_edge = []
for line in open(train_dataset_path).readlines():
curLine = line.strip('\n')
train_list.append(curLine)
for line in open(train_gt_dataset_path).readlines():
curLine = line.strip('\n')
train_list_GT.append(curLine)
for line in open(train_edge_dataset_path).readlines():
curLine = line.strip('\n')
train_list_edge.append(curLine)
valid_list = []
valid_list_GT = []
for line in open(valid_dataset_path).readlines():
curLine = line.strip('\n')
valid_list.append(curLine)
for line in open(valid_gt_dataset_path).readlines():
curLine = line.strip('\n')
valid_list_GT.append(curLine)
print(f"{fold} / {K} fold training")
# set DataLoader
train_data = Train_Dataset(img_list=train_list, label_list=train_list_GT, edge_list=train_list_edge, image_resolution=image_resolution)
valid_data = Valid_Dataset(img_list=valid_list, label_list=valid_list_GT, image_resolution=image_resolution)
train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True, num_workers=num_workers, pin_memory=False)
valid_loader = DataLoader(valid_data, batch_size=1, shuffle=False, num_workers=num_workers, pin_memory=False)
# set optimizer
opt = torch.optim.AdamW(model_test.parameters(), lr=initial_lr, betas=(0.9, 0.999))
if use_scheduler:
t = 5 # warmup
T = epoch
n_t = 0.5
lambda1 = lambda epoch: (0.9 * epoch / t + 0.1) if epoch < t else 0.1 if n_t * (
1 + math.cos(math.pi * (epoch - t) / (T - t))) < 0.1 else n_t * (
1 + math.cos(math.pi * (epoch - t) / (T - t)))
scheduler = torch.optim.lr_scheduler.LambdaLR(opt, lr_lambda=lambda1)
scaler = amp.GradScaler(enabled=is_amp)
for i in range(epoch):
train_loss = 0.0
valid_loss = 0.0
if use_scheduler:
lr = scheduler.get_lr()
model_test.train()
if network == "SegFormer" or network == "upernet" or network == "CSWin" or network == "SwinSegFormer" or network == "HILASegFormer" or network == "DASegFormer" or network == "HRViT" or network == "PVT" or network == "CoaT":
model_test.output_type = ['loss']
k = 1
for x, y, z, w in tqdm(train_loader):
if use_carveMix:
list = w.numpy()
if list[0] in list[1:]:
selected_lidex = np.argwhere(list[1:] == list[0])
selected = selected_lidex[0] + 1
image1 = x[0].numpy()
label1 = y[0].numpy()
image2 = x[selected[0]].numpy()
label2 = y[selected[0]].numpy()
new_target, new_label = generate_new_sample(image1, image2, label1, label2)
x[0] = new_target
y[0] = new_label
x, y, z, w = x.half().to(device), y.half().to(device), z.half().to(device), w.to(device)
if network == "SegFormer" or network == "upernet" or network == "CSWin" or network == "SwinSegFormer" or network == "HILASegFormer" or network == "DASegFormer" or network == "HRViT" or network == "PVT" or network == "CoaT":
input = {'image': x, 'mask': y, 'edge': z, 'cls': w}
else:
input = rgb(x)
with amp.autocast(enabled=is_amp):
output = model_test(input)
if network == "SegFormer" or network == "upernet" or network == "CSWin" or network == "SwinSegFormer" or network == "HILASegFormer" or network == "DASegFormer" or network == "HRViT" or network == "PVT" or network == "CoaT":
loss0 = output['bce_loss'].mean()
loss1 = output['aux2_loss'].mean()
if finetune:
lossT = loss0 + 0.2 * loss1
else:
lossT = loss0 + 0.2 * loss1
else:
lossT = calc_loss(output, y, bce_weight=0.7)
opt.zero_grad()
scaler.scale(lossT).backward()
scaler.unscale_(opt)
# torch.nn.utils.clip_grad_norm_(net.parameters(), 2)
scaler.step(opt)
scaler.update()
train_loss += lossT.item() * x.size(0)
k = 2
if use_scheduler:
scheduler.step()
train_loss = train_loss / len(train_list)
print('Epoch: {}/{} Training Loss: {:.6f}'.format(i + 1, epoch, train_loss))
valid_probability = []
valid_mask = []
model_test.eval()
if network == "SegFormer" or network == "upernet" or network == "CSWin" or network == "SwinSegFormer" or network == "HILASegFormer" or network == "DASegFormer" or network == "HRViT" or network == "PVT" or network == "CoaT":
model_test.output_type = ['inference']
with torch.no_grad():
with amp.autocast(enabled=is_amp):
for x1, y1 in tqdm(valid_loader):
x1, y1 = x1.to(device), y1.to(device)
if network == "SegFormer" or network == "upernet" or network == "CSWin" or network == "SwinSegFormer" or network == "HILASegFormer" or network == "DASegFormer" or network == "HRViT" or network == "PVT" or network == "CoaT":
input = {'image': x1, 'mask': torch.ones((x1.shape[0], 1, x1.shape[2], x1.shape[3])).to(device)}
else:
input = rgb(x1)
output = model_test(input)
if network == "SegFormer" or network == "upernet" or network == "CSWin" or network == "SwinSegFormer" or network == "HILASegFormer" or network == "DASegFormer" or network == "HRViT" or network == "PVT" or network == "CoaT":
output['probability'] = F.interpolate(output['probability'], size=(3000, 3000), mode='bilinear', align_corners=False)
pred = torch.where(output['probability'] > 0.5, 1, 0)
# valid_loss = output['valid_loss'].data.cpu().numpy()
else:
output = torch.sigmoid(output)
# output = F.interpolate(output, size=(3000, 3000), mode='bilinear', align_corners=False)
pred = torch.where(output > 0.5, 1, 0)
valid_probability.append(pred.data.cpu().numpy())
valid_mask.append(y1.data.cpu().numpy())
probability = np.concatenate(valid_probability)
mask = np.concatenate(valid_mask)
dice = compute_dice_score(probability, mask)
metric_this_epoch = dice.mean()
if metric_this_epoch > best_metric:
print('Validation dice increased ({:.6f} --> {:.6f}). Saving model! '.format(best_metric, metric_this_epoch))
torch.save(model_test.state_dict(), weights)
best_metric = metric_this_epoch
else:
print('Validation dice decreased ({:.6f} <-- {:.6f}). '.format(best_metric, metric_this_epoch))
# if valid_loss < best_loss:
# print('Validation loss decreased ({:.6f} --> {:.6f}). Saving model! '.format(best_loss, valid_loss))
# torch.save(model_test.state_dict(), weights1)
# best_loss = valid_loss
# else:
# print('Validation loss increased ({:.6f} <-- {:.6f}). '.format(best_loss, valid_loss))
torch.save(model_test.state_dict(), f'/root/autodl-tmp/best_model/latest_model_{network}_{fold}_lung.pth')
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="HuBMAP", formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--device', type=int, default=0, help='GPU device')
parser.add_argument('--num_workers', type=int, default=2, help='number of workers')
parser.add_argument('--input_channel', type=int, default=3, help='image channel')
parser.add_argument('--output_class', type=int, default=1, help='output class, binary classification (output_class = 1)')
parser.add_argument('--image_resolution', type=int, default=768, help='image resolution we resize')
parser.add_argument('--epochs', type=int, default=200, help='max epoch')
parser.add_argument('--batch_size', type=int, default=5, help='batch size')
parser.add_argument('--backbone', type=str, default="efficientnet-b7", help='backbone')
parser.add_argument('--network', type=str, default="Unet", help='network')
parser.add_argument('--initial_learning_rate', type=float, default=7.5e-4, help='initial learning rate')
parser.add_argument('--use_scheduler', type=bool, default=True, help='use scheduler')
parser.add_argument('--use_carveMix', type=bool, default=False, help='use carveMix')
parser.add_argument('--finetune', type=bool, default=False, help='finetune model')
parser.add_argument('--finetune_path', type=str, default=r'/root/HuBMAP/code/saved_model/weights/best_model_segbit2v2_1_7949.pth', help='finetune model path')
parser.add_argument('--folds', type=int, default=5, help='split number')
parser.add_argument('--k_th_fold', type=int, default=1, help='k-th fold we train')
# kidney organ
# parser.add_argument('--train_dataset_path', type=str, default=r'/root/HuBMAP/code/train_valid_list_path_newprostate/train_img_fold_1.txt', help='train dataset path')
# parser.add_argument('--train_gt_dataset_path', type=str, default=r'/root/HuBMAP/code/train_valid_list_path_newprostate/train_mask_fold_1.txt', help='train ground truth path')
# parser.add_argument('--train_edge_dataset_path', type=str, default=r'/root/autodl-tmp/train_edge_768_x3_fold_1_160all.txt', help='train edge path')
# parser.add_argument('--valid_dataset_path', type=str, default=r'/root/HuBMAP/code/train_valid_list_path_newprostate/valid_img_fold_1.txt', help='valid dataset path')
# parser.add_argument('--valid_gt_dataset_path', type=str, default=r'/root/HuBMAP/code/train_valid_list_path_newprostate/valid_mask_fold_1.txt', help='valid ground truth path')
# no lung organ
parser.add_argument('--train_dataset_path', type=str, default=r'/root/autodl-tmp/train_img_768_x3_fold_1_lung.txt', help='train dataset path')
parser.add_argument('--train_gt_dataset_path', type=str, default=r'/root/autodl-tmp/train_mask_768_x3_fold_1_lung.txt', help='train ground truth path')
parser.add_argument('--train_edge_dataset_path', type=str, default=r'/root/autodl-tmp/train_edge_768_x3_fold_2_prostate.txt', help='train edge path')
parser.add_argument('--valid_dataset_path', type=str, default=r'/root/autodl-tmp/valid_img_768_x3_fold_1_lung.txt', help='valid dataset path')
parser.add_argument('--valid_gt_dataset_path', type=str, default=r'/root/autodl-tmp/valid_mask_768_x3_fold_1_lung.txt', help='valid ground truth path')
parser.add_argument('--saved_model_path', type=str, default="./saved_model", help='saved model path')
parser.add_argument('--visualize_of_data_aug_path', type=str, default="./saved_model/pred", help='visualization data augmentation')
parser.add_argument('--weights_path', type=str, default="./saved_model/weights", help='weights path')
parser.add_argument('--weights', type=str, default=r'/root/autodl-tmp/best_model/best_model_eff7u_1_lung_dice.pth', help='best_model.pth')
parser.add_argument('--weights1', type=str, default=r'/root/autodl-tmp/best_model/best_model_eff7u_1_lung_dice.pth', help='best_model.pth')
args, unkown = parser.parse_known_args()
main(args)