-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.m
130 lines (93 loc) · 3.34 KB
/
test.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
load('case1.mat')
nh_ch4 = 1700;
sh_ch4 = 1700;
nh_co = 100;
sh_co = 100;
nh_oh = 6.6e5;
sh_oh = 6.6e5;
kx_global = 0.7;
day2sec = 60*60*24; % convert days to seconds
year2sec = 365*day2sec;
%n_air = params.n_air; % molec/cm^3 for dry atmosphere
n_air = 2.5e19;
conversion = day2sec * n_air/1d9; % conversion factor rom ppb/day to molec/cm^3 / s;
ppb2con = n_air / 1e9;
k_ch4 = 5e-15;
k_co = 2.0e-13;
%k_ch4 = params.k_12ch4; % ppb/day
%k_co = params.k_co; % ppb/day
%k_ch4 = k_ch4 / conversion; % molec/cm^3 / s
%k_co = k_co / conversion; % molec/ cm^3 / s
kX_NH = 1;
kX_SH = 1;
%kX_NH = 1.885 ; % molec/cm^3/s
%kX_SH = 2.212 ; % molec/cm^3/s
%%% Read in concentrations
nh_ch4 = ppb2con * nh_ch4; % molec/cm^3
sh_ch4 = ppb2con * sh_ch4; % molec/cm^3
global_ch4 = 0.5* (nh_ch4 + sh_ch4); % molec/ cm^3
nh_co = ppb2con * nh_co; % molec/ cm^3
sh_co = ppb2con * sh_co; % molec/ cm^3
global_co = 0.5* (nh_co + sh_co); % molec/ cm^3
%nh_oh = out.nh_oh; % molec/ cm^3
%sh_oh = out.sh_oh; % molec/ cm^3
global_oh = 0.5* (nh_oh + sh_oh); % molec/ cm^3
time_index = 1;
%nh_e_folds = zeros(size(out.nh_ch4));
%sh_e_folds = zeros(size(out.nh_ch4));
%global_e_folds = zeros(size(out.nh_ch4));
for t = 1:time_index
nh_jacobian = zeros(3,3);
sh_jacobian = zeros(3,3);
global_jacobian = zeros(3,3);
%%% Construct the jacobians according to Prather 1994
nh_jacobian(1,1) = -k_ch4 * nh_oh(t);
sh_jacobian(1,1) = -k_ch4 * sh_oh(t);
global_jacobian(1,1) = -k_ch4 * global_oh(t);
%%% the [2,1] element is 0
nh_jacobian(3,1) = -k_ch4 * nh_ch4(t);
sh_jacobian(3,1) = -k_ch4 * sh_ch4(t);
global_jacobian(3,1) = -k_ch4 * global_ch4(t);
% 2. Now for the CO equation
nh_jacobian(1,2) = k_ch4 * nh_oh(t);
sh_jacobian(1,2) = k_ch4 * sh_oh(t);
global_jacobian(1,2) = k_ch4 * global_oh(t);
nh_jacobian(2,2) = -k_co * nh_oh(t);
sh_jacobian(2,2) = -k_co * sh_oh(t);
global_jacobian(2,2) = -k_co * global_oh(t);
nh_jacobian(3,2) = k_ch4 * nh_ch4(t) - k_co * nh_co(t);
sh_jacobian(3,2) = k_ch4 * sh_ch4(t) - k_co * sh_co(t);
global_jacobian(3,2) = k_ch4 * global_ch4(t) - k_co * global_co(t);
% 3. The Oh reaactions, d OH / dt
nh_jacobian(1,3) = -k_ch4 * nh_oh(t);
sh_jacobian(1,3) = -k_ch4 * sh_oh(t);
global_jacobian(1,3) = -k_ch4 * global_oh(t);
nh_jacobian(2,3) = -k_co * nh_oh(t);
sh_jacobian(2,3) = -k_co * sh_oh(t);
global_jacobian(2,3) = -k_co * global_oh(t);
nh_jacobian(3,3) = -k_ch4 * nh_ch4(t) - k_co * nh_co(t) - kX_NH;
sh_jacobian(3,3) = -k_ch4 * sh_ch4(t) - k_co * sh_co(t) - kX_SH;
global_jacobian(3,3) = -k_ch4 * global_ch4(t) - k_co * global_co(t) - kx_global;
nh_jacobian = nh_jacobian';
sh_jacobian = sh_jacobian';
global_jacobian = global_jacobian';
%%% Take the eigenvalues
D_nh = eig(nh_jacobian);
D_sh = eig(sh_jacobian);
D_global = eig(global_jacobian);
% CH4 lifetimes
result.ch4_nh_lifetime(t) = -1/D_nh(2)/year2sec;
result.ch4_sh_lifetime(t) = -1/D_sh(2)/year2sec;
result.ch4_global_lifetime(t) = -1/D_global(2)/year2sec;
result.ch4_ss(t) = -1 ./(global_jacobian(1,1)*year2sec);
% CO lifetimes
result.co_nh_lifetime(t) = -1/D_nh(3)/day2sec;
result.co_sh_lifetime(t) = -1/D_sh(3)/day2sec;
result.co_global_lifetime(t) = -1/D_global(3)/day2sec;
result.co_ss(t) = -1 ./(global_jacobian(2,2)*day2sec);
% OH lifetimes
result.oh_nh_lifetime(t) = -1/D_nh(1);
result.oh_sh_lifetime(t) = -1/D_sh(1);
result.oh_global_lifetime(t) = -1/D_global(1);
result.oh_ss(t) = -1 ./global_jacobian(3,3);
end