-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathexample-mab.py
319 lines (269 loc) · 11.2 KB
/
example-mab.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
'''
**Digital advertising** is a form of marketing that targets online
users. A simple example of online marketing is where a website
embeds a small advertisement banner with the objective that
users visiting the website will click the advertisement banner
to explore the advertised products or services.
However, not all types of advertisements will attract all users.
In our example, we have 5 types of ads we can put in the banner.
For each user visiting our webpage, we need to decide which
type of ads we should show to the user such that we can achieve
the highest click through rate, i.e. the highest chance of users
clicking the presented ad.
In this tutorial, we shall use **Multi-Armed Bandit** (MAB)
reinforcement learning (RL) to perform decision making. MAB
is an online learning meaning that the machine learning (ML) agent
learns during the operation.
In reinforcement learning, the ML agent interacts with the environment
to learn the behaviour of the environment and try to find appropriate
actions that can maximize the rewards. The following diagram illustrates
the interaction between the ML agent and the environment:
```
+-----------------------+
| Action |
| V
+---------+ +--------------+
| ML | | |
| Agent | | Environment |
+---------+ | |
^ +--------------+
| State, Reward |
+-----------------------+
```
We first need to define the behaviour of users. This is the
`environment` defining how a user responds to an offered
advertisement. The user behaviour is not known to the ML agent,
and it is the task of the ML agent to learn and establish the
relationship. Its job is to discover which advertisement is
the most attractive to the user.
The behaviour of users are described in the following table.
It shows the likelihood of users clicking different types of
advertisements.
```
The Environment
+-------------------+---------------+
| | Probability |
| Ad Type | of clicking |
+-------------------+---------------+
| Toys & Games | 10% |
| Cars | 30% |
| Sports | 40% |
| Holiday Packages | 35% |
| Foods & Health | 25% |
+-------------------+---------------+
```
Our setup is:
- the `arms` are advertisement type to offer
- the `reward` is 1 if a click is registered, 0 otherwise
'''
from math import ceil
import random
import time
import matplotlib.pyplot as plt
from mab import MAB
from mab import ExplorationFirst, EpsilonGreedy, EpsilonDecreasing
######################################################################
## User behaviour matrix for the environment (static class)
######################################################################
class Ad:
Type = {
# arm expected reward
# ------------------------
"toys" : 0.10,
"cars" : 0.30,
"sports" : 0.40,
"holidays" : 0.35,
"foods" : 0.25
}
AllArms = list(Type.keys()) # list of all ad types
######################################################################
## Theoretical result calculator (static class)
######################################################################
class Theoretical:
regret_series = [] # store the regret series
@staticmethod
def expected_click_rate(arm) -> float:
'''This is commonly notated as $\mu(a)$.'''
return Ad.Type[arm]
@staticmethod
def optimal_click_rate() -> float:
'''This is commonly notated as $\mu^*$, which is
$\max_{a\in A} \mu(a)$
'''
return max([mu_a for mu_a in list(Ad.Type.values())])
@staticmethod
def regret(t) -> float:
'''This is commonly notated as $R(T)$, which is the regret
at round $T$. It is calculated by
$R(T) = T \mu^* - \sum_{t=1}^T \mu(a_t)$
where $a_t$ is the arm selection history.
'''
optimal = Theoretical.optimal_click_rate() * t # optimal click rate
experienced = 0 # experienced click rate
for arm in Ad.AllArms:
experienced += Theoretical.expected_click_rate(arm) * Empirical.get_arm_count(arm)
regret_at_t = optimal - experienced
Theoretical.regret_series.append(regret_at_t)
return regret_at_t
@staticmethod
def get_regret_series():
return Theoretical.regret_series
######################################################################
## Historical result keeper (static class)
######################################################################
class Empirical:
click_selections = [] # store the history of click selections
click_outcomes = [] # store the history of click outcomes
count_selection = {} # store the total count of each arm selection
@staticmethod
def report(arm,outcome):
Empirical.click_outcomes.append(outcome)
Empirical.click_selections.append(arm)
if arm not in Empirical.count_selection:
Empirical.count_selection[arm] = 0
else:
Empirical.count_selection[arm] += 1
@staticmethod
def get_arm_count(arm):
if arm not in Empirical.count_selection:
return 0
return Empirical.count_selection[arm]
@staticmethod
def get_click_rate():
return sum(Empirical.click_outcomes)/len(Empirical.click_outcomes)
@staticmethod
def get_click_rate_series():
click_rate_series = []
click_rate_total = 0
click_rate_size = 0
for click in Empirical.click_outcomes:
click_rate_total += 1 if click else 0
click_rate_size += 1
click_rate_series.append(click_rate_total/click_rate_size)
return click_rate_series
@staticmethod
def get_arm_selection_series():
arm_selection_series = {}
for arm in Ad.AllArms:
arm_selection_series[arm] = [0]
for selected_arm in Empirical.click_selections:
for arm in Ad.AllArms:
if arm==selected_arm:
arm_selection_series[arm].append(arm_selection_series[arm][-1]+1)
else:
arm_selection_series[arm].append(arm_selection_series[arm][-1])
for arm in Ad.AllArms:
arm_selection_series[arm] = arm_selection_series[arm][1:]
return arm_selection_series
######################################################################
## Client profile
######################################################################
class Client:
def will_click(self, ad) -> bool:
'''Will this client click this advert?'''
click_prob = random.randint(0,99)
if click_prob<100*Ad.Type[ad]:
return True
return False
####################################################################
## main loop
####################################################################
if __name__ == "__main__":
## setup environment parameters
num_users = 2000 # number of users to visit the website
num_clicks = 0 # number of clicks collected
animation = True # True/False
## setup MAB
mab = MAB() # simple MAB agent
## setup exploration-exploitation strategy (pick one)
strategy = EpsilonGreedy(0.15)
#strategy = EpsilonDecreasing(-0.5)
#strategy = EpsilonGreedy(1.0) # set to 1.0 for 100% exploration
#strategy = ExplorationFirst(0.2*num_users) # 20% exploration first
#strategy = ExplorationFirst(0.02*num_users) # 2% exploration first
## ready-set-go
print("\n")
spinner = ["\u2212","\\","|","/","\u2212","\\","|","/"]
for i in range(40,0,-1):
print(f"\033[KRunning in ...{ceil(i/10)} {spinner[i%len(spinner)]}")
print("\033[2A")
time.sleep(0.1*animation)
print(f"\033[K")
## print heading for the animation
print(f"Testing {mab.description()}\n")
print("Ad_type Reward Ad_shown_to_users")
print("-----------------------------------")
## this is the main loop
## the objective of ML agent is to achieve
## as many clicks as possible through learning
for round in range(1,num_users+1):
## a user has visited the website
user = Client()
## prepare an advertisement
## ..either by exploration
if strategy.is_exploration(round):
offered_ad = random.choices(Ad.AllArms)[0]
## ..or by exploitation
else:
(offered_ad,reward) = mab.get_best_arm()
if offered_ad is None: # no info about this arm yet?
offered_ad = random.choices(Ad.AllArms)[0]
## will the user click?
if user.will_click(offered_ad):
click_reward = 1
num_clicks += 1
else:
click_reward = 0
Empirical.report(offered_ad, click_reward)
mab.update_reward(arm=offered_ad, reward=click_reward)
## show animation
for arm in Ad.AllArms:
r = mab.get_reward(arm)
len_count_bar = int(50*Empirical.get_arm_count(arm)/round)
print(f"\033[K> {arm:8s} {r:5.2f} ",end="")
print("*" if arm==offered_ad else " ",end="")
print("[%s] %d"%("="*len_count_bar,Empirical.get_arm_count(arm)))
current_click_rate = Empirical.get_click_rate()
current_regret = Theoretical.regret(round)
print(f"\nClick rate = {current_click_rate:5.2f}")
print(f"Regret = {current_regret:5.2f}")
print("\033[9A")
time.sleep(0.05*animation if round<1000 else 0.01*animation)
## show outcome
average_click_rate = num_clicks/num_users
best_click_rate = Theoretical.optimal_click_rate()
print("%s"%"\n"*8)
print(f"Strategy: {strategy.description()}")
print(f"Number of users = {num_users}")
print(f"Number of clicks = {num_clicks}")
print(f"Click rate = {100*average_click_rate:1.2f}%")
print(f"Theoretical best click rate = {100*best_click_rate:4.2f}%")
## plot the click rate & regret
plt.figure(1)
click_series = Empirical.get_click_rate_series()
plt.plot(range(len(click_series)), click_series, '-')
plt.xlabel("Number of ads offered")
plt.ylabel("Click Rate")
plt.figure(2)
regret_series = Theoretical.get_regret_series()
plt.plot(range(len(regret_series)), regret_series, '-')
plt.xlabel("Number of ads offered")
plt.ylabel("Regret")
## plot the arm selections
plt.figure(3)
arm_selection_series = Empirical.get_arm_selection_series()
ad_type = Ad.AllArms.copy()
ad_color = {0:"green",1:"blue",2:"pink",3:"yellow",4:"red"}
for i in ad_color:
plt.plot([],[],color=ad_color[i], label=ad_type[i], linewidth=5)
plt.stackplot(range(len(arm_selection_series[ad_type[0]])),
arm_selection_series[ad_type[0]],
arm_selection_series[ad_type[1]],
arm_selection_series[ad_type[2]],
arm_selection_series[ad_type[3]],
arm_selection_series[ad_type[4]],
colors=list(ad_color.values()))
plt.xlabel("Number of ads offered")
plt.ylabel('Number shown')
plt.legend(loc="upper left")
plt.show()