-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathscalability.py
112 lines (89 loc) · 2.66 KB
/
scalability.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
"""
Example of how to assess scalability of programs to budget.
"""
"""
Imports
"""
import sys
sys.path.append("src")
# Parameters
import parameters.tdc as p_p
import parameters.neurips_social as p_so
import parameters.neurips_workshop as p_w
# Models
import models.professional_program as mfn_pp
# Plotting
import utilities.plotting.budget as budget
from utilities.sampling.get_budget_sweep_data import get_budget_sweep_data
# Common python packages
import numpy as np # for sorting arrays
# Simulations
from squigglepy.numbers import K, M
"""
Inputs for data and plot
"""
# Set parameters for data
n_sim = 100 * K
time_points = np.concatenate(
(np.logspace(np.log10(0.0001), np.log10(10), 200), np.arange(10.0, 61.0, 1.0))
)
programs = ["tdc", "neurips_social", "neurips_workshop"]
default_parameters = {"tdc": p_p, "neurips_social": p_so, "neurips_workshop": p_w}
master_functions = {"tdc": mfn_pp, "neurips_social": mfn_pp, "neurips_workshop": mfn_pp}
# Colors used for different programs
program_colors = {"tdc": "green", "neurips_social": "purple", "neurips_workshop": "orange"}
"""
Simulate outcomes for different target budget values
"""
budget_values = np.concatenate(
(
[0],
np.logspace(np.log10(2 * K), np.log10(50 * K), 15),
np.arange(60 * K, 151 * K, 15 * K),
)
)
df_budget = get_budget_sweep_data(
programs,
budget_values,
default_parameters,
master_functions,
n_sim=n_sim,
time_points=time_points,
estimate_participants=True,
)
"""
Plot cost-effectiveness and number of participants for different target budget values
"""
# Outcomes as a function of budget
plot_budget_qarys = budget.plot_budget_qarys(
df_budget,
program_colors,
title="Expected counterfactual QARYs and cost-effectiveness by budget",
xlabel="Allocated budget amount",
ylabel1="Expected counterfactual QARYs",
ylabel2="Cost-effectiveness (QARYs per $1M)",
legend_pos="lower right",
use_pseudo_log_scale=True,
)
plot_budget_qarys.set_size_inches((12, 7))
plot_budget_qarys.savefig(
"output/plots/examples/budget_qarys.png",
dpi=300,
bbox_inches="tight",
)
# Plot number of participants as a function of budget
plot_budget_n_participant = budget.plot_budget_n_participant(
df_budget,
program_colors,
participant_types=["contender", "attendee"],
title="Expected number of participants by budget",
xlabel="Budget amount allocated to program (USD)",
use_pseudo_log_scale=False,
x_max_attendee=20 * K,
)
plot_budget_n_participant.set_size_inches((12, 7))
plot_budget_n_participant.savefig(
"output/plots/examples/budget_n_participant.png",
dpi=300,
bbox_inches="tight",
)