forked from uzh-rpg/rpg_e2vid
-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathimage_reconstructor.py
110 lines (85 loc) · 5.24 KB
/
image_reconstructor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import torch
import cv2
import numpy as np
from model.model import *
from utils.inference_utils import CropParameters, EventPreprocessor, IntensityRescaler, ImageFilter, ImageDisplay, ImageWriter, UnsharpMaskFilter
from utils.inference_utils import upsample_color_image, merge_channels_into_color_image # for color reconstruction
from utils.util import robust_min, robust_max
from utils.timers import CudaTimer, cuda_timers
from os.path import join
from collections import deque
import torch.nn.functional as F
class ImageReconstructor:
def __init__(self, model, height, width, num_bins, options):
self.model = model
self.use_gpu = options.use_gpu
self.device = torch.device('cuda:0') if self.use_gpu else torch.device('cpu')
self.height = height
self.width = width
self.num_bins = num_bins
self.initialize(self.height, self.width, options)
def initialize(self, height, width, options):
print('== Image reconstruction == ')
print('Image size: {}x{}'.format(self.height, self.width))
self.no_recurrent = options.no_recurrent
if self.no_recurrent:
print('!!Recurrent connection disabled!!')
self.perform_color_reconstruction = options.color # whether to perform color reconstruction (only use this with the DAVIS346color)
if self.perform_color_reconstruction:
if options.auto_hdr:
print('!!Warning: disabling auto HDR for color reconstruction!!')
options.auto_hdr = False # disable auto_hdr for color reconstruction (otherwise, each channel will be normalized independently)
self.crop = CropParameters(self.width, self.height, self.model.num_encoders)
self.last_states_for_each_channel = {'grayscale': None}
if self.perform_color_reconstruction:
self.crop_halfres = CropParameters(int(width / 2), int(height / 2),
self.model.num_encoders)
for channel in ['R', 'G', 'B', 'W']:
self.last_states_for_each_channel[channel] = None
self.event_preprocessor = EventPreprocessor(options)
self.intensity_rescaler = IntensityRescaler(options)
self.image_filter = ImageFilter(options)
self.unsharp_mask_filter = UnsharpMaskFilter(options, device=self.device)
self.image_writer = ImageWriter(options)
self.image_display = ImageDisplay(options)
def update_reconstruction(self, event_tensor, event_tensor_id, stamp=None):
with torch.no_grad():
with CudaTimer('Reconstruction'):
with CudaTimer('NumPy (CPU) -> Tensor (GPU)'):
events = event_tensor.unsqueeze(dim=0)
events = events.to(self.device)
events = self.event_preprocessor(events)
# Resize tensor to [1 x C x crop_size x crop_size] by applying zero padding
events_for_each_channel = {'grayscale': self.crop.pad(events)}
reconstructions_for_each_channel = {}
if self.perform_color_reconstruction:
events_for_each_channel['R'] = self.crop_halfres.pad(events[:, :, 0::2, 0::2])
events_for_each_channel['G'] = self.crop_halfres.pad(events[:, :, 0::2, 1::2])
events_for_each_channel['W'] = self.crop_halfres.pad(events[:, :, 1::2, 0::2])
events_for_each_channel['B'] = self.crop_halfres.pad(events[:, :, 1::2, 1::2])
# Reconstruct new intensity image for each channel (grayscale + RGBW if color reconstruction is enabled)
for channel in events_for_each_channel.keys():
with CudaTimer('Inference'):
new_predicted_frame, states = self.model(events_for_each_channel[channel],
self.last_states_for_each_channel[channel])
if self.no_recurrent:
self.last_states_for_each_channel[channel] = None
else:
self.last_states_for_each_channel[channel] = states
# Output reconstructed image
crop = self.crop if channel == 'grayscale' else self.crop_halfres
# Unsharp mask (on GPU)
new_predicted_frame = self.unsharp_mask_filter(new_predicted_frame)
# Intensity rescaler (on GPU)
new_predicted_frame = self.intensity_rescaler(new_predicted_frame)
with CudaTimer('Tensor (GPU) -> NumPy (CPU)'):
reconstructions_for_each_channel[channel] = new_predicted_frame[0, 0, crop.iy0:crop.iy1,
crop.ix0:crop.ix1].cpu().numpy()
if self.perform_color_reconstruction:
out = merge_channels_into_color_image(reconstructions_for_each_channel)
else:
out = reconstructions_for_each_channel['grayscale']
# Post-processing, e.g bilateral filter (on CPU)
out = self.image_filter(out)
self.image_writer(out, event_tensor_id, stamp, events=events)
self.image_display(out, events)