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Abstract

Alterations to microvascular flow are responsible for a number of ocular and

systemic conditions including diabetes, dementia and multiple sclerosis. The chal-

lenge is developing of methods to capture and quantify retinal capillary flow in the

human eye. We built a bespoke adaptive optics scanning laser ophthalmoscope with

two spatially offset detection channels, with configurable offset aperture detection

schemes to image microvascular flow. In this research we sought to develop an auto-

matic tool that detects and tracks erythrocytes. A deep learning convolutional neural

network is proposed for classifying blood-cell from non-blood-cell patches in each

frame. The patch classification is coupled with a localisation process to detect the

positions of the red blood cells. A capillary segmentation method is also presented

to increase the efficiency and performance of the localisation process. Finally, a

technique is presented to match corresponding cells between the two channels in

the raster, allowing for a fully automatic blood flow velocity measurement. Results

from various experiments are reported and compared to give the most accurate con-

figuration. The deep learning basis of the tool allows for a continual and adaptable

learning that can improve the performance of the tool as more samples are collected

from subjects. In addition, the modular nature of the tool allows for replacing its

components, such as the capillary segmentation, with state-of-the-art techniques

allowing for the software’s longevity.
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Chapter 1

Introduction

1.1 Introduction

1.1.1 Motivation

As the vascular system gets older, or damage is done to it from different diseases

such as diabetes, heart disease, chronic inflammatory diseases or other neurological

diseases, the arteries are not able to dampen the rate of blood flow as healthy ones

do. As a result, the pressure wave tracks down the arterial blood vessels and into the

capillaries. These changes occur before the disease is detected using traditional test-

ing. It is believed that this loss of vessel pulse dampening is responsible the disease

effects of diabetes [1], dementia [2], stroke [3], hypertension [4, 5], Parkinson’s

and Multiple Sclerosis [6]. The capillaries of the brain could serve as an effective

biomarker for the existence of such diseases. Unfortunately, examining these small

vessels and the blood flow in the brain can be invasive, expensive or sometimes

impossible. However, the vascular system of the eye and brain is similar to each

other and different from everywhere else in the body. As a result, imaging of the

retinal vasculature could accurate reflect the microvascular changes that happen in

the brain [7]. “The eye is the window of the soul”, and more specifically, a window

to the brain[8]. The retina is unique in this way because, with the developments in

adaptive optics, non-invasive imaging of the it’s vascular plexus is possible [9].

In this thesis, the main goal is to provide a tool that is able to locate and track

blood cells in videos of the capillaries inside the retina. Multiple videos from var-
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(a) left image from [10]. Right picture from [11]. (b)
Figure 1.1: (a) An image of the eye anatomy highlighting the vessel layers in the retina.

The imaging depth of field of our imaging process captures the red blood cells
as they move in the capillaries in middle to deep levels of the retina. The arteries
and veins are fed through the optical nerve. On the image on the left it can be
seen that the retina hosts small vessels at many levels. (b) A still frame of the
retina from our videos. The frame is a part of a bigger video from one of our
subjects found in this media link.

ious subjects were captured for this purpose. Fig. 1.1 shows a sample frame from

the videos that were acquired. In this thesis it was asked to detect and track the

blood cells in these videos.

The work described in this thesis is mainly focused on the automatic detection

of the erythrocytes in the images, but also comes with a solution for tracking the

cells to allow the measuring of blood flow statistics. Manually detecting the blood

cell’s in these images and finding the correspondence is slow, cumbersome, and

error prone. Previously published methods are semi-automated and require several

subjective steps which degrades repeat-ability and generality of the method.

1.1.2 Video Acquisition

In the next section the method that is used to produce the images and videos shown

in Fig 1.1 is described. To put things in context, Confocal and Offset Aperture

Imaging is briefly explained. Additionally, the Adaptive Optics Scanning Laser

Opthalmoscope (AOSLO) method for enhancing the quality of the imaging process

is explained in short.

https://youtu.be/-7ew5sqOaTo
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1.1.2.1 Confocal and Offset Aperture Imaging

In both confocal and offset aperture imaging, a laser beam of a non-harmful wave-

length is shone in to the eye. The ray is then focused to narrow depth of field and

is reflected back to a sensor. The beam scans the retina in a raster fashion with a

fixed rate until the raster image of the desired size is created The scanning beam

frequency and the size of the frame affect the frame rate of the produced video.

The difference between the confocal and offset aperture imaging is demon-

strated in Fig. 1.2.

Figure 1.2: Figure from [12]. Diagram that illustrates the difference between the confocal
and offset aperture imaging. (A) In confocal imaging, the aperture is centred
allowing for light that is directly reflected to be captured by the sensor. (B) In
offset aperture mode, a slight offset is introduced in the aperture allowing the
sensor to capture diffused light.
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1.1.2.2 Adaptive Optics Scanning Laser Ophthalmoscope (AOSLO)

The imaging techniques that were described, when used alone, produce distorted

and noisy results. Adaptive optics introduces a deformable mirror to correct dis-

torted wavefronts producing higher fidelity signal. Such techniques allow microvas-

cular examination imaging of the retina [12]. Please see Fig. 1.3 for a demonstration

of the imaging process and how AOSLO can improve quality.

(a) (b)
Figure 1.3: (a) Image from[13]. A laser is shone to the eye and the beam is reflected back

to a sensor. (b) Image from [14]. Adaptive optics introduce a deformable
mirror to correct distorted wave-front. The corrected signal is collected by the
detector.

In our work, the videos captured use a confocal device along with two offset

aperture devices that produce 3 videos of the retina. One video is captured with

a confocal ophthalmoscope. The two offset aperture videos use imaging beams of

790nm and 850nm wavelength. The videos are synchronised and create a raster of

the eye at the same time. In the next section, we explain the reason for producing

multiple videos of the subjects retina.
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1.1.2.3 Rapid high resolution image with dual-channel scanning

technique

Our group build a system that uses The Rapid high resolution image with dual-

channel scanning [15] technique. This technique utilises an Adaptive Optics Laser

Opthalmoscope (AOSLO) to produce two images of the same area in the retina with

a slight time difference by using two imaging beams of different wavelength.

Producing a single video of the capillaries captured at a frame rate of 32fps

(based on the scan rate and frame size) does not allow for cell tracking. The rea-

son is, because the time difference between two consecutive frames is too large,

the correspondence of the frames can not be established due to the aliasing effect

demonstrated in Fig. 1.4. Moving the scanners much faster is not feasible and

having very fast scanners is also expensive.

Figure 1.4: Demonstration of the aliasing effect. An image from[16]. The red blood cells
are abundant in the capillaries and they move fast compared to the frame acqui-
sition rate. As seen in B, If the frame rate is not fast enough the time difference
between the between the frames is large. It’s not possible to establish a corre-
spondence between the cells in two consecutive frames.

The work in [15] proposes a new technique where two videos are captured at

the same time with two slightly different imaging wavelengths and slightly different

spatial starting points. The vertical offset of the two scanner introduces a slight tem-

poral difference between corresponding frames of the videos from the two imaging

beams. As a result, two rasters cross the same retina area at slightly different times,

providing a quicker effective frame rate, and opening up the opportunity for tracking
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of individual cells without aliasing by locating and matching corresponding frames

from the two videos.

The time difference between the channels in [15] is 4.7 ms while the imple-

mentation of our team currently achieves 5.3 ms due to differences between the

mirror placement and the device used in the paper. The time difference is a con-

figurable value and can change by adjusting the vertical displacement between the

rasters by changing the mirrors configuration.

In our work, a 750nm offset aperture laser was used for the first video and

a 890nm offset aperture wavelength was used for the second. Videos and frames

from the first and second imaging beam will be referred as belonging to the 750nm

channel and 850nm channel accordingly. In addition to the two offset apertures

a confocal imaging video was captured that captures exactly the same retinal area

with the 750nm channel but uses confocal mode instead.

Multiple subjects volunteered to have their retina scanned. As a result, numer-

ous videos were collected from various subjects allowing for great variability in the

data. For a demonstration of the results of the dual-beam scanning image please see

Fig. 1.5.

(a) (b)
Figure 1.5: The corresponding images of the same area in the retina captured by two imag-

ing wavelengths at the same time. The images from the two channels are ver-
tically offset to introduce a small time difference between them. (a) The frame
of the 790nm channel. (b) The frame from the 850nm channel.
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1.2 Goal and challenges

In this thesis the main goal is to create an automated pipeline to facilitate the iden-

tification of retinal blood vessels, blood cells, and provide the ability to track them

in time to generate maps of retinal blood flow rate. The pipeline will be applied to

videos of the retinal vasculature captured using a bespoke Adaptive Optics Light

Scanning Opthalmoscope which was described in the previous section. As de-

scribed, this device has the ability to detect multiple reflections and wavelengths

at the same time. Using this detection paradigm, we then seek to detect individ-

ual blood cells in frames of the 790nm channel. Once the cells are detected, the

channels are matched and flow velocity can be calculated.

The work in [15] offered a potential solution for locating blood cells in a se-

lected vessel segment. The process described is semi automatic because multiple

thresholds need to be manually applied to get an ’ideal’ velocity trace. These inter-

ventions include a threshold of Z-scores for normalisation, a Gaussian blur applica-

tion, an intensity threshold and finally averaged cell trace detection. Each of these

steps needed to be applied to each video pair making repeatability hard and large

scale analysis near impossible. The approach used has two main downsides. First

it’s not automatic and is subjective to the user’s input. Secondly, due to the fact

that the cells do not necessarily show the same characteristics and can have great

variability in intensity, even in the same frame, an intensity driven approach can

produce many false positive and can miss a lot of cells. To overcome this problem,

it was decided that a deep learning focused approach was going to be used, since

it is known that deep learning approaches can detect features that image processing

approaches can not.

The method described in [17] uses a deep learning baseline to identify retinal

cone photoreceptors in selected regions of interest. In their work, a convolutional

neural network was trained and used to classify photoreceptor cones from non-

photoreceptors in mosaic of the retina. Their work used a pipeline in which patches

from a region of interest were passed through the network and assigned a proba-

bility of cell/non-cell to every pixel. We then decided that we should adapt this
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method for our use case and the images devices were identical and blood cells and

photoreceptors share some characteristics. Our implementation and a more in depth

description of the method is described in the methodology 3 section.

As our process and purpose were different, several significant adaptations were

needed. First of all, the blood cells show weaker contrast characteristics when com-

pared to cones cells. For this we had to experiment with different contrast enhancing

techniques in an attempt to increase individual cell characteristics. In addition, the

photoreceptor images are stationary while our data come from a video, allowing us

to experiment with techniques that utilise the temporality of the data. The work in

[17] also describes a process for generating non photoreceptor samples for training

from the images. The photoreceptors are uniformly distributed in the image which

provides two key pieces of information. The uniformity of space can be used as

a filtering prior on probability maps, it also allows for some predictable distance

between each photoreceptors and the non-photoreceptor samples extracted around

each photoreceptor are significantly different. In our work, the red blood cells are

usually very close together in the capillaries and many times one cell starts when

the other ends making the extraction of negative patches more challenging. Multi-

ple non-cell extraction methods were attempted to increase the performance of the

network. Taking non-cell samples that are far away from cell samples had better

results in the classification because the cells are very distinct from non-cell but the

performance when estimating the locations were less accurate while taking non-cell

samples that are close to positive lead to harder training but more accuracy when

locating the cells.

To get cell positions in the videos an expert had to mark over 10000 cells

in various videos. This process is cumbersome and the marker could potentially

have slight errors when marking the centre of blood cells. Small errors could be

beneficial to our problem by having some noise in the data but could also make

the network over-fit on wrong training data. For this reason, we had to use data

augmentation techniques such as small random translations on all samples to reduce

this kind of over-fitting error.
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One additional challenge that had to be faced is that the background of the

video frames is some times similar in contrast to blood cells due to noise. In addi-

tion, because the non-cell samples are picked close to the cell samples, the network

is not trained on such background samples. As a result, many pixels that are not on

the capillaries and in fact belong to the background are falsely classified as cells. To

circumvent this, a method to segment the capillary sections from the background

had to be devised. Deep learning segmentation methods could can been used to

segment capillaries from background but this would require the manual creation of

the segmentation for each video to provide for learning. To avoid this an image

processing solution that utilised the temporal nature of the videos was designed.

Through trial and error, this solution gave sufficiently good segmentation for the

needs of our tool.

1.2.1 Thesis outline

In the next chapter the literature around classification in retinal images, deep learn-

ing, segmentation and blood cell tracking is explored. Following the literature re-

view, the methodology chapter gives with an in depth description of the training

and classification process, the segmentation and the tool implementation in general.

In the evaluation chapter, multiple configurations of the classifier are evaluated and

compared using test videos that were manually marked only for testing. Finally, we

conclude with final remarks and future work. In the appendix different model con-

figurations are demonstrated (Tab. A), along with their performance on classifying

and locating the cells (Tabs. B, C D). Additionally, in the appendix sample results

from runs on test videos are presented E.



Chapter 2

Literature Review

2.1 Retinal blood flow quantification

In this section, literature concerning techniques on imaging the retinal capillaries,

quantifying blood flow and hemodynamics are presented.

In [18] blood flow hemodynamics in the retina were measured using AOSLO.

In their technique, blood cells are observed as shadows with dark-tail like patterns.

This shadow effect was caused when red blood-cells track behind a leukocyte in the

capillaries causing the light to be obstructed and stopping it from being reflected

from the photoreceptors. This tail of erythrocytes is detected as a dark ’tad-pole’

like tail in videos (Fig.2.1).

The paper provides methods for calculating the speed of the tail to get an es-

timation on leukocyte velocity, which is reported to be close previously measured

leukocyte velocities. The technique described doesn’t allow for measuring erythro-

cyte velocities. This is a problem if you are trying to understand vascular hemo-

dynamics as not all capillaries are large enough to allow leukocytes to pass, so no

information would be recorded by this technique in these vessels. Additionally, ery-

thocytes and not leukocytes are responsible for the metabolic exchange in the retina,

and so their motion is the more essential. Furthermore, the capillaries of the confo-

cal videos are visualised by using motion-contrast enhancement that was introduced

in [9]. This method shows that statistics for the hemodynamics of the eye can be

extracted using noninvasive AOSLO direct monitoring of the retina. However only
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(a) Image from [18]

(b) Image from [18]

Figure 2.1: (a) Leukocytes move slowly in capillaries in relation to erythrocytes. Conse-
quently, erythrocytes form a tail behind them. The tail blocks light from hitting
the reflective photoreceptors.
(b) Five consecutive images from confocal video. In confocal imaging, the tail
is detected as a dark tail (near yellow arrow), and the erythrocyte as a bright
spot (red circle).

some cells are visible with this technique.

In [19], AOSLO is also used to characterise single file flow in parafoveal capil-

laries. In this publication, spatiotemporal plots were used to visualise the hemody-

namics of the vessels. The work provides an analysis on the plots, in combination

with other biometrics that were collected, to obtain information about flow dynam-

ics such as frequency, flow direction, speed, and pulsarity. In addition, the capil-

laries were visualised using the motion-contrast enhancing method first presented

in [9] which gave good quality images of the vessel maps, showing more capillar-

ies than red-free fundus photography. The work mainly evaluates leukocyte flow

dynamics.

The work in [20] complements previously discussed tools by providing a direct

and noninvasive visualisation of erythrocyte movement in capillaries. A combina-

tion of adaptive optics, a fast sCMOS camera, and a full field illumination allowed

the direct visualisation of individual erythrocytes in the capillaries. Then particle

image velocimetry was used to quantify the flow. The erythrocyte velocities with

this method were reported to agree with previously published results. While both

this camera and the one in this study use adaptive optics to improve image quality,
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the acquisition methods are completely different, so only some techniques from this

study are applicable to this thesis.

In the introduction it was mentioned that part of the work in [15] was used to

create the bespoke AOSLO video acquisition tool that creates frames with a very

small time difference using a dual-beam imaging technique that was described. In

the same publication, a method for computing the velocity of the erythrocytes is

also described. The cells must be first detected. By first normalising the frames

of the video for each channel and then applying a threshold to the images a binary

image is created for each frame. The threshold is N times the standard deviation

of the pixel intensity over the all the frames of the video. N is a value that must

be manually configured by the user for each video. Then a morphological open

operator is applied to the binary images to produce a set of locations of the cells.

Instead of comparing the cell locations directly between the channels, an “average

cell image” is created by averaging patches around the cells found within a manually

selected segment. By measuring the displacement of the “average cell images”

between the two channels the average displacement and hence the velocity can be

calculated (Fig. 2.2).

This method allows for measuring a bigger range of retinal capillary velocities

than was previously possible as shown in the results from high frame rate fundus

illumination system [20], or on leukocytes using either the entoptic phenomenon

[21][22], or other single channel imaging techniques with AOSLO [23][24][25][19]

as reported in the paper. The method can measure velocities higher than was pre-

viously possible because red blood cells can be faster than white blood cells when

travelling through capillaries due to the small vessel size which slows the latter cells

down. It also produces comparable results to labelling with fluorescein [26][27]

which is an invasive imaging method since it requires adding the artificial dye to the

eye. Additionally, this method is better for smaller vessels (capillaries) while other

techniques such as [28] or [29] are better for larger vessels. One additional benefit

of this method is that it allows for a bigger area of the retina to be imaged. The

benefit is twofold because it allows for the study of a bigger retina area and also
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Figure 2.2: Figure from [15]. (a) The the average cell is created from a vessel segment
in the first channel and in (b) The corresponding average cell for the second
channel that is 4.7 ms ahead of the first. A vertical and horizontal displacement
can be observed. (c) The displacement of in the x and y axis over the course
of 3 seconds in the selected segment. (d) The blood velocity within the vessel
segment

.

artefacts from eye movement can be corrected more easily using techniques such as

[30] by registration.

2.2 Cell recognition and localisation
In this section, literature around classification and localisation of objects in retinal

images is explored.

In this light, work done in image recognition and localisation of cone photore-

ceptors in AOSLO images is reviewed.

In [31] the cone photoreceptors are classified and located using an image pro-

cessing pipeline that uses SVN is. In brief, the begins by estimating the photorecep-

tor’s size using an automated process (Yellott’s ring[32] [33]) or by manual selec-

tion. The next step includes a bilateral and a Gaussian filter, an adaptive histogram

equalisation, an adaptive sliding-window enhancement that is applied to enhance

the contrast between the left/dark and right/bright sides of the cones, an aggressive
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Figure 2.3: Figure of photoreceptors mosaic from [31]. (b) Photoreceptor captured with
two different AOSLO imaging techniques.

thresholding to create a binary image, a non-overlapping extremal region detection

to detect the centroids, a preliminary model for cone extraction and finally a model

for refinement, and cone detection process using a Support Vector Machine (SVM).

The process is described with great detail in the paper. There are 11 configurable

hyper-parameters. The results reported in the paper show that the model is precise

and it’s results are comparable to a human grader for images of healthy retinas and

have a positive precision and recall on images of retinas with Stargardt disease. It’s

also reported that the model can outperform the, at the time, state of the art model

developed in[32].

Although the model shows promising results, it might not be easily generalised

making it hard to be adapted for objects of other shapes. The method creates a cone-

model that accounts for the characteristic shape and intensity of the photoreceptor

cone cells. In addition, the model is dependent on the spatial arrangement of the

photoreceptor mosaic. As a result, when the model is presented with images of the

photoreceptor mosaic of people with Stargardt disease, which is more sparse, it’s

performance drops and both the precision and recall of the model are significantly

lower.

Deep learning was shown to outperform traditional machine learning tech-

niques for a lot of imaging tasks including image classification. Deep networks

learn features directly from the data and do not rely to ad hoc rules that are unique

to the data-set. As a result, such networks are more adaptable. This is more ap-

pealing because deep learning models can be generic and a model that is a trained
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for a particular dataset can be adapted to be used for other datasets. One drawback

of deep learning is that it can be outperformed from traditional machine learning

techniques when the the amount of training data is sparse. This can be circum-

vented with techniques such as data augmentation [34] which was shown to work

with great success in the past[35]. Deep Convolution Neural Networks (CNNs)

have been shown to work for different image analysis tasks in many fields including

optical imaging[36, 34, 37, 38, 39] with great performance.

For this reason, the methods described [17] and in [40] are reviewed. Both of

this methods try to classify and locate cone photoreceptors in AOSLO images using

image classification deep neural networks. Due to the deep learning baseline, the

implementation for cell detection and localisation is not strictly dependent on the

structure and appearance of the cone cells. The work in [17] is briefly described:

First, images of the photoreceptor mosaic are captured and experts mark the centres

of each cone to create a training set for the binary classifier we need images for cone

and non-cone cells. A window of a fixed size is drawn around the marked centres

to extract patches of cones. Negative patches are extracted around the cone cell in a

voronoi diagram that is created from the cone centres. Then random points from the

edges of the voronoi pattern are selected as centres for the non-cone patches. This

process is demonstrated in Fig. 2.4.

Figure 2.4: Image from [17]. Training data generation process for the CNN training. (a)
The original image of the photoreceptor mosaic, (b) Image (a) with the cen-
tre of the photoreceptors marked by an expert and a voronoi diagram around
them. Points on the voronoi edges are randomly selected as centres of non-
photoreceptor patches. (c) An example of a cone (top) and non-cone (bottom)
patch extracted from the marked image (b).
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Once the training set is created the CNN classifier can be trained to detect cone

from non-cone images. The CNN described in[17] is a modification of the famous

AlexNet [41]. It consists of convolutional layers to generate feature maps, pool-

ing layers which are known to improve computational performance and increase

invariance to small distortions [42], Rectified linear units (ReLU) activation layers

to introduce non-linearities [42], batch normalisation layers which are reported to

increase training speed and reduce over-fitting by normalising layer inputs learning

their mean statistic [43]. In the end there are fully connected layers, again with

ReLU activations, for the final classification part. The last fully connected layer

has two outputs and is fed to a soft-max layer that turns the output to probability

distribution for cone and non-cone[44]. For the training process the weights are

randomly initialised. Each iteration, also called an epoch, a subset of the training

set, called a mini-batch, is fed to the network. For each image in the mini-batch a

label is predicted with a probability distribution from the soft-max layer, i.e 75 per

cent cone and 25 per cent non-cone. In the training process, because the label is

known for each image, a loss function measures the distance of the predicted output

and the actual label.

Proportionally to this distance, the network adjusts the weights, with a process

called back propagation. The training process is called gradient descent because

during the forward pass a gradient is calculated for each weight with the goal to

minimise the training loss.

With sufficient training data the network can potentially classify cones from

non-cones with a high accuracy. It should mention that, part of the dataset should

be used just for testing the performance of the classifier and should not be used for

training. The photoreceptors can then be localised in the image. In [17], a patch is

created around every pixel of the image and all the patches are classified with the

trained CNN. The result is a grayscale image with a probability of each pixel being

the centre of a cone. Next, a Gaussian smoothing is applied on the probability map

followed by an extended-maxima transform. The resulting binary image is filtered

by removing connected components that have low intensity (in the probability map)
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in the under a threshold. Finally, the centre of the remaining clusters is considered

to be the centre of the cone. For additional information for the parameter values see

[17].

The results are compared against the ’gold’ standard for detecting photorecep-

tors that uses graph theory and dynamic programming (GTDP) and a previous work

that we mentioned earlier that uses adaptive filtering and local detection (AFLD)

[32]. In both cases the results are comparable with a true positive rate ranging from

0.943 to 0.989 and a false discovery rate of 0.034 and as low as 0.003. For a more

detailed description of the evaluation method please refer to [17].

The results are appealing since it shows that the model can compete with state

of the art methods. Contrary to the other techniques, it has the advantage that it can

be adapted for applications with different modalities since it uses a modified generic

CIFAR network. The GTDP and AFLD models were created with assumptions and

rules that are specific for the photoreceptor mosaic.

2.3 Capillary segmentation

Capillary segmentation methods are useful for reducing the search-space in many

blood flow quantification methods since all the movement is limited within the cap-

illaries. Examining areas outside those vessels can introduce noise to the results

and reduce performance. In addition, limiting the search-space to the capillaries

can greatly reduce the amount of computations and time needed to quantify blood

flow.

Currently, there is a growing literature for blood vessel segmentation in retinal

images [45][38][37]. The data-set for this problems focuses on fundus imaging[46]

and is focused on big blood vessels in the retina (arteries and veins) and not on

capillaries. Fundus imaging is different in contrast and intensity to AOSLO imaging

rasters (Fig. 2.5). AOSLO videos could be flattened by creating a standard deviation

image of the video (explained more in depth in the methodology chapter)

Deep learning could also be used for segmentation tasks. One promising such

segmentation network is DeepVessel[48] which produces state of the art results. To
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(a) Fundus image from[47] (b) AOSLO image of a capillary

Figure 2.5: (a) Fundus and (b) AOSLO image comparison.

train for segmentation using a supervised machine learning method it is required to

have a ground truth for the capillaries
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Method

In this section, the pipeline from patch extraction to cell localisation and matching

are described.

3.1 Video stabilisation

The videos acquired are not stabilised and are hard to work with. As a first step

the videos should be stabilised. The videos were acquired over a period of 20 - 30

seconds. During this time the eye natural moves, which makes analysis of spatial

features difficult. To compensate for this eye motion, a proprietary motion stabil-

isation step was applied. This algorithm is described in detail in [30]. In short,

the stack of images are cross-correlated with the image producing the highest cross

correlation of the stack being assigned as the best frame. All other frames are then

stabilised in respect of that frame. As scanning devices construct the image pixel by

pixel, motion can occur during the acquisition of a single frame. To compensate for

this, images are broken into strips and each strip is them registered to the reference

frame. A matrix of strip locations is recorded. After all strips in a frame are aligned

to the reference frame, a spline fit and bi-cubic interpolation is applied to rejoin

and map the strips back to a full frame. This process is applied to all frames in the

stack. Strips and frames that do not achieve a desired threshold cross correlation are

removed from further analysis. Fig. 3.1 shows a frame before and after stabilisation

and corresponding media links of the videos.
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(a) (b)
Figure 3.1: (a) A frame from 790nm video before stabilisation. This media link shows the

non-stabilised video. (b) The same frame after stabilisation. Video is provided
with masks that keep only the valid part of the image. The following media link
shows the stabilised video.

3.2 Blood Cell Classifier
The first task was to classify blood cell patches from non blood cells. To do this a

convolutional neural network was used that was configured with adaptive patch size

input to account for different fields of view and cell appearance.

3.2.1 Patch Extraction

3.2.1.1 Single channel patch extraction

To train a binary neural network classifier it is required to have positive and negative

samples. For this case patches that represent blood cells and patches that don’t are

required to be extracted from the videos. To be more precise we define positive

blood cell patches as windows of certain patch size (i.e 21 x 21) that are centred

around a blood cell while non blood cell patches are windows of same size that,

although blood cells may be in them, they are not centred around blood cells. The

blood cell patches were hand picked by an expert by going through the frames

of the 790nm channel videos and marking the blood cells. The non blood cell

patches are extracted with one of two strategies implemented. The first strategy

was to select random points from the perimeter of the positive patch to serve as the

centre for the non-cell patch. From these positions the non cell blood cell positions

https://youtu.be/-7ew5sqOaTo
https://youtu.be/mlv2NGlyD_o
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picked. These patch sizes were the same as the positive patches were extracted.

This strategy requires that the user picks a radius for the search window. A radius

of 21 pixels was most commonly used. An example of such extraction can be

seen in Fig. 3.3. Bigger values select patches that are further from the blood cell

making it easier for the network to learn positives from negative. On the other

hand, the localisation of patches is less accurate since the classifier isn’t trained for

patches that are close to blood cells. This has two main negative effects. The first

is that classifier is much more sensitive, because it picks up cells near the blood

cell as positive as well. This is expected since convolutional neural networks are

translation invariant by construction, meaning that they can classify the same object

correctly regardless of where it is in the image. The second issue, that closely

relates to the first one, is that blobs of high intensity in the generated probability

map merge together making it harder for the probability map binarisation to pick

them up as individual cells. When the negative search window is too small, learning

becomes considerably harder because the cell patches are just translations of the non

cell patches. This is sometimes preventively hard since the network can not discern

between positive and negative patches. The effects of negative patch extraction

radius sizes can be see in Fig.

(a) (b)
Figure 3.2: The effects of using different negative search window sizes. The images show

a heat-map of a vessel segment where hot areas represent areas where the cen-
tre of a cell is more probable. (a) When using a small negative search window
the network learns to classify patches close to positive less confidently, produc-
ing cleaner blobs. Estimated cell locations can be extracted from each blob.
(b) When using a large search window for negatives, the network classifies all
patches close to the patch as positive confidently. As a result the blobs merge
together. It’s not possible to extract correct cell locations from the merged
blobs.
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The rectangle extraction process is presented in Fig. 3.3

(a)

(b) (c) (d) (e) (f)
Figure 3.3: Rectangle negative patch extraction.(a) The patch extraction process. The

green rectangles represent positive patches while the solid red rectangles rep-
resent the negative patches. Points around the dashed red rectangles are picked
as negative patch centres. (b) A positive patch extracted around the light green
point in (a). (c - f) Negative patches. Patches around yellow points from (a).

The second negative selection strategy is similar to the first but doesn’t require

a negative selection radius manually specified, since it’s automatically computed

for each cell. The non cell positions are picked around a circle of each blood cell

location. The radius of the circle of each position is calculated as half the distance

between the blood cell’s closest neighbouring blood cell. This method guarantees

that the negative cell positions are never on top of a positive position. This method

also doesn’t require an extra parameter for the search radius. The closest neigh-

bours are picked by using a KD tree implementation by the sklearn library[49]. The

negative positions are picked as random points along the perimeters of the circles.

If more than two points are to be picked from the circle then they are picked uni-
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formly. For example if 4 points are picked then the first point is picked at random

and the other 3 points are picked at 90, 180, and 270 degrees away from the first

point. In addition, a point that is at the middle between every two consecutive points

is picked. The reason for these points are for the network to train on hard cases be-

tween two blood cells so that blood cell blobs in the probability map are not merged

together. This extraction process can be seen in Fig. 3.4.

(a) (b)

(c) (d) (e) (f) (g) (h)
Figure 3.4: Circle negative patch extraction. (a) The patch extraction process. The green

rectangles represent positive patches while the solid red rectangles represent
the negative patches. Points around the dashed red circle are picked as negative
patch centres. The circle radius for each point is half the distance to its closest
neighbour. The radius is capped to 21 pixels. The negative points are picked
uniformly around the circle with small epsilon added or subtracted from the
radius. (b) In addition to points around the circle, a negative point is always
picked at the exact middle between every two consecutive positive points. (c)
A positive patch extracted around the light green point in (a). (d - h) Negative
patches. Patches around yellow points from (a).

These two methods are the main methods used for picking positive and nega-

tive patches. Until now we talked about picking one dimensional patches from each

frame. The problem is that our goal is to measure flow within the vessels, which

means we need to incorporate temporal information. The current positive/negative
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patch detection does not accomplish this and doesn’t take into account additional

temporal information that can be used for classifying the patches. In contrast to the

classifier in [17], the retinal images in this case come from a video where temporal

information can be used. In the next two sections we discuss about temporal patches

and mixed channel patches that try to take advantage of the temporal nature of the

data.

3.2.2 Temporal patches

The temporal patches are similar to the spatial patches previously discussed with

the difference that they are comprised, at their simplest form, of three channels, one

for the previous frame, one for the current, and one for the frame after.

To be more precise, for each frame that has marked cell positions, we take

positive and negative positions with the techniques that were previously mentioned

but at the same positions we take patches from previous and latter frames. This is

to include temporal information that is missed from the spatial patches. One chal-

lenge that is faced is the speed of the moving cells relative to the image acquisition

speed. This challenge creates a high probability of aliasing, or complication due to

similarity in appearance of the cells and cell spacing. To overcome this, the patch

sizes must be bigger to include the temporal information. The number of previous

and latter frames is adjustable and is called temporal width. For example, a tempo-

ral width of 2 would produce a 5 channel patch with the current frame patch in the

middle, the first two channels for the patches at the same position in the previous

frames and the last two channels from the patches at those potions from the 2 frames

after.

A side effect of this method is that we can not use frames that are too close

to the start or the end of the video. To be more precise, the frames that closer

than temporal width to the start or the beginning can not be used because there

are not enough frames to create the patch. This means that such frames can not

be used neither in learning, discarding all training samples for those frames, nor

in classification. Fortunately, this is an acceptable compromise since the videos

recorded are long and losing a couple of frames of data is insignificant.
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3.2.3 Mixed channel patches

Another way for including temporal information is to use channels that contain

information from the confocal video, the 790nm channel video, and the 850nm

channel video. In a similar fashion to the temporal patches, each channel is a patch

from a different frame, but in this case the not from the same video. The patches are

picked from the positive and negative cell positions in the 790nm channel video. At

these positions, the corresponding patches from the confocal and 850nm channel

video are picked, then the final patch is the concatination of those 3 channels with

the first channel of the patch being from the confocal video, the middle channel

being from the 790nm channel and the last channel being from the 850nm channel.

The confocal and 790nm channel videos happen to have the blood cells at the same

image positions but the 890nm channel video has a vertical displacement in relation

to the 790 video so in order to pick the corresponding position from the 850nm

video, the 850nm channel frame has to be registered with a method that will be

discussed in a later section. Similarly to the temporal patches, the patch size should

be bigger to account for the displacement of the cell at the 850nm channel. See Fig.

3.5 for the mixed channel patch extraction process.

(a)

(b) (c) (d) (e)
Figure 3.5: Mixed channel patch extraction. (a) The mixed patch extraction process. The

patches are extracted from the confocal, the 790nm channel, and the 850nm
channel video with a patch size of 35 to 45 pixels. The 850nm channel is
vertically aligned with 790nm frame before patch extraction. (b) The confocal
patch. (c) The 790nm channel patch. (d) The 850nm channel patch. (e) The
mixed channel patch, the confocal patch as the red channel, the 790nm patch
as the green channel, and the 850nm channel as the blue channel.
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A side effect of this method, is that, due to the registration of the 890nm chan-

nel frames, some parts of the images can not be used for training or classification.

This is not a big problem for the classification since the end goal is to calculate the

displacement of the blood cell between the 790nm and the 850nm channel and so

only the blood cell locations that are present in both videos need to be located.

3.2.3.1 Limiting negative patch selection within capillaries

In a future section, a process for the creation of a vessel mask that limits the search

space for potential cells in the capillaries of the retina is described. Because the

search space is limited to patches inside vessels, the negative patches should also

be extracted within the capillaries. For this reason the vessel mask is also used to

remove any negative cell positions that are outside the capillaries. This process can

help the network learn more difficult negative sample cases to boost accuracy when

locating the blood cells.
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3.2.4 Convolutional Neural Network classifier

To classify the patches it was decided to use a convolutional neural network. The

architecture of the network is similar to the one described in [40]. It is comprised of

a convolutional part and a dense part that ends up to two nodes for the two classes,

blood cell and not blood cell. The convolutional network includes average and max

pooling layers, batch normalisation layers and dropout layers. The network classi-

fier structure was build with pytorch. The network structure was not fixed since the

input dimension for changed to account for multiple patch sizes and channel num-

bers. For a model that classifies 23x23 grayscale images, the following structure

was used (as printed from pytorch):
CNN(

(convolutional): Sequential(

(0): Conv2d(1, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))

(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(2): MaxPool2d(kernel_size=(3, 3), stride=2, padding=0, dilation=1, ceil_mode=False)

(3): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))

(4): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(5): ReLU()

(6): AvgPool2d(kernel_size=3, stride=2, padding=1)

(7): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))

(8): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(9): ReLU()

(10): AvgPool2d(kernel_size=3, stride=2, padding=1)

)

(dense): Sequential(

(0): Linear(in_features=576, out_features=64, bias=True)

(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(2): ReLU()

(3): Dropout(p=0.5, inplace=False)

(4): Linear(in_features=64, out_features=32, bias=True)

(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(6): ReLU()

(7): Dropout(p=0.5, inplace=False)

(8): Linear(in_features=32, out_features=2, bias=True)

)

3.2.5 Learning

The network is then trained using the dataset extracted with one of the methods

previously described, with a label 1 for the positive and 0 for the negative patches.

The learning is done with a gradient descent method with back propagation. The

Adam optimiser is used with a learning rate that stars with 0.01 and then gradu-

ally drops by 10−1 when the validation accuracy stop seeing an improvement for

20 epochs, in order to induce faster learning at the beginning and more controlled
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learning at the later stages. The dataset is split into a validation and training set.

The validation set size is 0.2 of the whole dataset size. The training happens only

using the training set while the validation set is used for measuring the validation

loss and the validation accuracy. Early stop is used to prevent the network from

over-fitting, and the network is stopped when the validation accuracy stops increas-

ing for an amount of epochs. Because the training dataset is imbalanced with more

negative patch samples than true positive patch samples, the negative patches are

undersampled while the positive patches are oversampled to induce balanced sam-

pling. The performance of the model is evaluated at fixed intervals. The validation

accuracy, specificity, and sensitivity of the classifier is measured. For a binary clas-

sifier, accuracy is the ratio of correct predictions to all predictions. Sensitivity, is

the ability of the classifier to classify the positive results correctly while specificity

is the ability of the classifier to predict negative samples[50]. The sensitivity of a

binary classifier is measured as:

sensitivity =
number of true positive

number of positive samples

While the specificity is calculated as:

specificity =
number of true negatives

number of negative samples

While the accuracy is calculated as:

accuracy =
number of correct predictions

total number of samples

While accuracy can be a good performance metric for a classifier when having

balanced classes, it can not correctly measure the performance of a classifier when

the classes are severely imbalanced. For our case, the negative samples greatly out-

weight the positive samples due to the extraction method. For example, a classifier

that is very specific but with a very low sensitivity could have a high accuracy. To

circumvent this, the balanced accuracy[51] metric is used. The balanced accuracy
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is calculated as:

balanced accuracy =
specificity+ sensitivity

2

The weights for the model with the highest validation accuracy and balanced accu-

racy are saved.

Random small translation transformations are added to the training set to ac-

count for small errors of the manual marking of the blood cells and to further de-

crease over-fitting (Fig. 3.6).

Figure 3.6: Random translations on a cell patch. Small transformations are applied during
sampling when training to reduce over-fitting.

The network and it’s learning routine are both implemented using pytorch

which is a python machine learning library based on the Torch library that supports

automatic differentiation [52].

3.3 Blood cell localisation
The next step is the localisation of the blood cells within the frames of the 790nm

channel video. First of all, the capillaries of each video must be detected by using

video processing processing methods that are described in the next section. We call

pixels that are located on the detected capillaries vessel pixels.

3.3.1 Probability Map generation

Afterwards, a patch should be extracted for every vessel pixel of the frame. The

frame is padded, by reflection, to get patches that are close to the borders. The

trained classifier then assigns a probability for each vessel pixel. The resulting

image is called the probability map of the frame. Fig. 3.7 shows two examples of

probability maps produced for a training and a validation video.
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(a) (b)
Figure 3.7: Two probability map examples. The values in a probability map range from 0

to 1 and are produced by applying softmax on the output of the classifier for
patches extracted around each pixel. The probability for the positive class pre-
diction is assigned to each pixel. The probabilities are only calculated for vessel
pixels by using a vessel mask. (a) An example of a training video probability
map. It can be observed that the network is fairly confident. (a) An example of
a test video probability map. The predictions are not as confident but areas in
the centres of the blobs have higher intensities than in the edges.



3.3. Blood cell localisation 40

3.3.2 Probability Map binarisation and cell localisation

Finally, the probability map is binarised and the estimated cell locations are ex-

tracted from the centres of connected components of the binarised image by taking

the area of the blob and the intensities of the blob from the probability map into

account.

The probability map is a gray-scale image with values from 0 to 1 with pix-

els close to one when near estimated blood cell locations. Because of translation-

invariant, areas around the estimated blood cell locations are expected to also have

high intensities forming blobs around potential blood cell locations. The purpose

of this step is to calculate the blood cell locations from the probability map that

maximise

The location extraction process is tantamount to the process described in[32].

First the probability map is blurred with a sigma σ . Afterwards, an extended-

maxima transform is applied. The extended-maxima transform detects regional

maxima of the H-maxima transform. Regional maxima, or local maxima, are con-

nected components that have higher intensity that the neighbouring pixels. The

H-maxima transform filters the regional maxima of an image based on a threshold

H. The local maxima that have a height difference from their neighbours smaller or

equal than H are being suppressed, leaving only regional maxima who have a height

difference greater than H[53]. The transform is implemented using scickit-image’s

morphology reconstruction function and mahotas’[54] regmax function. The result

of the extended-maxima transform is a binary image. The connected components

binary are potential locations for the blood cell locations. Weak candidates are dis-

carded when the maximum intensity in the region from the filtered probability map

is less than a threshold T. Finally, the centres of the remaining regions are con-

sidered as the blood cell estimated locations. To be more precise, the estimated

cell locations can be the weighted centre of the regions where the intensities of the

probability map at the blobs are considered, or the max intensity pixel in the region

or simply the geometric centre of mass of the regions. Please see Fig. 3.8 for the

binarisation and cell localisation process.
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To tune the hyper-parameters σ ,H, and T a grid search on a set of potential

values is performed to maximise dice coefficient on manually marked validation

videos. Dice coefficient and the performance evaluation of the tool will be discussed

in the evaluation chapter.

(a) (b) (c)

(d) (e)
Figure 3.8: The cell localisation process from probability map. (a) The probability map as

is produced by classifying each pixel. (b) Applying Gaussian blur. (c) Apply-
ing extended maxima transform. (d) Regions that have a maximum intensity
less than a threshold are discarded. (Regions inside red squares). (e) Select the
maximum intensity pixel as the estimated location for the cell.
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3.4 Vesselness - Capillary detection
Because the network is trained with blood cell samples and non blood cell samples

that are close to the positive samples, the classifier has a low accuracy on pixels that

are away from the vessels. As a result, areas that are away from the capillaries can

be classified randomly as positive. For this reason, the detection of the capillaries

within a video is important, both for improving the accuracy of the tool, and for

making the classification process faster by reducing the search space within the

image.

3.4.1 Standard Deviation Image

Having a registered video of the capillaries of the retina, the vessel image of the

video can be created by taking the standard deviation of of each pixel across the

frames. Calculating the standard deviation of each pixel alone can yield good im-

ages where the capillaries are highlighted but the results are better by applying a

video processing step to the frames to increase the motion contrast.

One such method is described in [9]. In brief, the method is similar to differ-

ence video technique that is used for background subtraction but uses frame division

instead. For every pair of consecutive frames j, j + 1 the division image D(x, y) is

calculated as:

D j(x,y) =
I j(x,y)

I j+1(x,y)

Then, multi-frame division frames M(x, y) are calculated as:

M j(x,y) =
D j(x,y)+D j+1(x,y)

2

In [19] it is claimed that, this the multi-frame division method can help remove

unchanging parts of the frame, while highlighting areas with high relative motion,

in our case the capillaries where the erythrocytes move through. In this work, the

technique gave better results by applying adaptive histogram equalisation to each

multi-frame division frame. Histogram equalisation is used to to increase contrast

in images without losing information[55]. For this purpose scikt-image[56] im-

plementation of Contrast Limited Adaptive Histogram Equalisation (CLAHE) was
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used. Lastly, the standard deviation image is calculated. The resulting image usu-

ally highlights the capillaries better than by computing the standard deviation image

of the unprocessed video.

Another method for highlighting the capillaries is described in [15]. Using this

video normalisation method, the frames are first smoothed using a Gaussian filter.

Then, each frame is normalised by being divided by it’s mean. Next, each pixel is

divided by the average of the pixel’s intensity across the frames. According to [15],

this method can correct changes in intensity that appear from minor variations in

the tear film or the patients positions. Finally, just as before, the standard deviation

image is calculated by taking the standard deviation of each pixel across the frames

of the processed video.

Both these methods can be combined, usually by applying the latter method

before the first and then calculating the standard deviation image.

Both these methods could also be used as a processing step prior to patch

extraction but unfortunately the learning doesn’t benefit much.

3.4.2 Vessel Mask generation

By having the standard deviation image, the next step is to segment the image to

get the vessel mask where al background pixels are 0. For this purpose we use the

following image processing techniques: First, we use frangi filters ridge operator

that is known for it’s ability to detect vessel-like structures[57]. Skcikit-image’s

implementation of the filter is used. Next, optionally an additional adaptive his-

togram equalisation step. Afterwards, the frangi image is thresholded to create a

binary image. The threshold is calculated automatically using Otsu’s method [58].

Usually at this stage, the binary image capture the vessel structures pretty well but

the thresholding process introduces some blob-like structure that are produced from

either noise in the standard deviation image or small vessel segments. To remove

these blobs, a morphological open operator is used. The morphological opening

operator first erodes the image to remove small connected components and then,

using the same structuring element, dilates the image to keep the other structures to

have the same shape. The binary image at this phase captures the biggest vessels
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but doesn’t necessary connect vessels that are normally connected. This can occur

because at some parts of the capillaries there isn’t much relative activity, and so the

response in the standard deviation is not as strong. For this reason, a morphological

close operator is used. The operator is the opposite of the opening operator since

it first dilates the image and then, using the same structuring element, erodes the

image to bring the structures to their original shape. This operator is used to fill in

small holes and close gaps while maintaining the shape of the objects in the image.

Because at this stage the vessel mask can sometimes be too thin, an optional binary

dilation step is followed. As a final step, connected components of area smaller than

a predefined value are detected and removed. The results of this process can be see

in Fig. 3.9 and Fig. 3.10.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)
Figure 3.9: The vessel mask creation process. (a) Simple standard deviation image doesn’t

highlight vessels very well. (b) Using the method in [15] gives good results for
this video. (c) The standard deviation image after video motion contrast en-
hancement. This is done after applying both the video normalisation described
in [15] and the motion contrast enhancement described in [9] with the extra step
of adaptive histogram equalisation applied to each multi-frame. (d) After ap-
plying adaptive histogram equalisation to (c). (e) After running the frangi filter
on (d). Hot areas score high in vesselness. (f) After applying otsu’s threshold
to create binary image. (g) After applying morphological opening to remove
small speckles and thin offshoots from the main capillaries. (h) After applying
morphological closing to fill small holes and connect capillaries that should be
connected. (i) After applying optional binary dilation to (h). (j) Detect and re-
move small connected components (that have an area smaller than a value that
is predefined). (k) The final vessel mask. (l) The vessel mask applied on (d)
showing that the vessel mask captures the areas with a lot of movement well.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)
Figure 3.10: The vessel mask creation process. Same process as the one in described Fig.

3.9. In this case it can be observed that a simple standard deviation image on
the unprocessed video (a) or after applying the video normalisation method in
described in [15] (b) doesn’t highlight the capillary segment very well. Also
applying the motion contrast enhancement step (c) and finally applying an
extra adaptive histogram equalisation step (d) highlights the capillaries better.
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3.5 Channel registration
Because there’s a spatial disparity between the two channels, the frames from the

850nm must be aligned to the frames from the 790nm channel. It is known that

the displacement is strictly vertical. This fact is an important constraint since the

search-space is limited only to the vertical axis. Because the vessel masks for

videos of both channels can be accurately produced with the method previously

discussed, they’re almost the same but with a vertical displacement. To align the

850nm channel all possible displacements, from 1 pixel of vertical displacement to

the height of frame, of the 850nm video vessel mask are tried while also calculating

the overlap with the 790nm video vessel mask. The overlap is measured using the

Sørensen–Dice coefficient which is a metric that can measure how close two sets

of data are. It can be used with discrete data, for example when comparing the

outputs of the classifier to the actual output, or to check the overlap of two binary

segmentation results[59]. The Dice Similarity Coefficient (DSC) is calculated as:

DSC = 2
|X ∩Y |
|X |+ |Y |

(3.1)

Where, for our case, |X | and |Y | is the number of pixels that are true for the two

vessel masks correspondingly and |X ∩Y | are the number of pixels that are true

in both masks. The displacement that maximises the Dice coefficient is selected

as the translation needed for the alignment of the two channels. Examples of the

registration can be seen in 3.11.
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Figure 3.11: Registration examples. Each row shows a registration example for a different
video. The red mask is the vessel mask generated for the 790nm channel video
while the green vessel mask is the vessel mask generated for the 850nm chan-
nel video. The third column shows the 850nm vessel mask aligned to match
the vessel mask of the 790nm channel. The last column shows the overlap be-
tween the two masks with yellow parts showing parts where the masks match.
Even if the vessel mask detection process can have slight differences for the
two channels, the registrations are consistently correct.
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3.6 Blood cell matching between channels

Once the blood cell locations are estimated, the blood cell locations from the 790nm

channel video should be matched with the corresponding cell locations in the 850nm

channel. That would allow for calculating the translation of the blood cell and, since

the time disparity is known, the velocity.

Because the final goal of this work is to estimate the blood flow velocity, we

can calculate the average displacement of the erythrocytes along a straight capillary

and then divide by the time difference of the two channels. To do this we follow

the method of calculating the average cell along the capillary which is similar to

the method described in [15]. For a single video, a straight and long vessel seg-

ment should be selected because the displacement should be parallel to the flow. If

the vessel segment has a curve, then the velocity measurement would be inaccurate

because the erythrocytes will no longer move in a straight line and so the distance

travelled between the two channels would be unknown, even if the cells were cor-

rectly matched . At the moment, the vessel segment selection should be done by the

user for better accuracy. For our use case, this is not a big problem since the user

should just select one vessel segment per video session. Methods for automatic ves-

sel segment selection were attempted but the lack of robustness in the results does

not excuse the automisation of this simple process.

Once the vessel segment is selected, a trained network runs over the pixels

in the vessel to estimate the erythrocyte locations with the process previously dis-

cussed. For each estimated cell location in the vessel segment, a patch of 51x51

pixels is extracted around the location. For the same locations, patches of the same

size are extracted in the registered 850nm channel frame. Next, the patches for

each channel are averaged. This produces an average cell in the centre of the aver-

age790nm patch. This is because the patches averaged are expected to be centred

around blood cells. On the other hand, for the average 890nm patch the average

cell is at a distance from the centre because. This is due to the fact that the patches

were extracted at the same location in the 890nm channel meaning that, during the

time between the two channels were captured, the blood cell moved. Because it was
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observed that the two average cells shared similar characteristics like the roundness

and the change of intensity from high to low, template matching was used to find the

displacement of the average cell. A smaller patch of 21x21 pixels is extracted in the

centre of the average 780nm patch and then the template is matched to the average

890nm patch. The centre of highest similarity part of the 890nm patch is considered

the matched average cell location. The vertical and horizontal displacement of the

matched location from the centre of the patch is considered the distance that the cell

has moved. Please see Fig. 3.12 for a representation of this process.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)
Figure 3.12: Average cell matching using template matching. (a) First a straight vessel

segment with blood cells is selected. (b) The vessel segment in the 790nm
channel (left) and 850nm channel (right). (c) The 51x51 patches extracted
around the cell locations from the 790nm channel. (d) The average patch
of the 790nm patches. It can be observed that the average cell is located at
the centre of the patch. (e) The patches extracted at same locations from the
850nm channel. (f) The average patch of the 790nm patches. This time, the
average cell is displaced from the centre. (g) The template image extracted
from the centre of the average 790nm patch. (h) Performing template match-
ing on the average 890nm patch, we find the part of the image with the high-
est similarity with the template. The centre of this part is considered as the
matched location (orange point in image). The distance from the centre of the
patch is considered as the displacement of the the cell.
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In addition to template matching, feature matching was also used to match

blood cell locations between the two channels. In this case, the average cell doesn’t

need to be centred in the average 790nm patch. This can happen when the estima-

tions are not exactly centred in the middle of cells. The process is almost identical

to the one previously described but this time, instead of extracting a template from

the middle of the average 790nm patch and doing template matching on the 850nm

patch, feature matching is directly performed on the patches. Feature matching is

a process of detecting highly characteristic spatial features, called key points, and

matching them between two images. The key points in algorithms such as SIFT

[60] are represented as descriptors that are usually translation, rotation, scale, and

illumination invariant. In this case the SURF[61] feature detector was used because

it was shown that it can outperform many of it’s competitors and it’s comparable to

SIFT. In addition, an open source implementation of SURF is offered with opencv

[62] in xfeatures2d class.

Performing SURF on the two average patches one or more key points can be

matched. The first key point match is taken as the match of the blood cell in the two

channels. Instead of taking the distance from the centre of the patch, the displace-

ment is calculated as the vertical and horizontal difference from the matched key

point positions (Fig. 3.13).

Figure 3.13: Average cell matching using feature matching (SURF). On the left is the 790nm
channel average patch and on the right is the 850nm channel average patch. The key
point location on the left image is not necessarily at the exact centre of the image
because the feature detector may find a location in the 790nm patch with a more
characteristic feature that is not exactly in the middle. The displacement of the cell is
set to be the distance between the matched keypoints.
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3.7 Cell selector GUI
Because the process of picking cells can be cumbersome and error-prone, it was

decided to create a GUI that would show the networks estimated positions. A user

can then keep or add new points. The selection can be saved the future training (Fig.

3.14).

This tool makes it easier to pick cells that the network missed. We believe

that the false negative samples can share some characteristic that the network hasn’t

learn. By specifically picking cells that the network missed, we believe that the

classification performance of the network could be significantly improved.

Figure 3.14: User loads a video and the estimated positions as a csv. The estimates are shown as
blue points. The vessel and stabilisation mask are automatically found and used. The
user can go through frames freely. For each frame the user can click on the blue points
to mark them as suitable for training. User can also pick points that are missed by the
network (light green points). Right-clicking can undo a wrong selection. Finally, the
selected green locations can be saved a csv.

Libraries used

For the modules and libraries used please see appendix F



Chapter 4

Evaluation

4.1 Classification evaluation

In this chapter, the results from from different network configurations are evaluated

and compared. Each network is to be evaluated in two stages. First, the ability of the

classifier to classify positive from negative cell patches is evaluated. Positive and

negative patches are extracted from all the training videos and then they are split

to a training and a validation set. The dataset was randomly split into training and

validation set with a 5 to 1 ratio, meaning that, for every training sample there is 1

validation sample. An additional and independent test set from patients not used in

the training and validation set was developed. The reason for this, is to give a bet-

ter idea how the networks generalised to data of the same type but with potentially

slightly different characteristics than were used in training. The test videos, along

with sample results for those videos, can be found in E. Although the validation

dataset from the split is never used in training, it can be similar enough to the train-

ing dataset to give false indications of the classifier’s performance. The classifier

is also evaluated with patches extracted only from the test videos. In the evalua-

tion results, both the validation performance and test performance will be shown. It

must be noted that the patch extraction method for the test performance evaluation

will be the same for all networks, regardless the extraction method used for train-

ing. This is to provide a fair evaluation on the classification on the test patches. The
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classification performance of the network is evaluated with the following metrics:

accuracy =
number of true positives+number of true negatives

number of samples

sensitivity =
number of true positives

number of positive samples

speci f icity =
number of true negatives

number of negative samples

balanced accuracy =
sensitivity+ specificity

2

A true positive sample is when the prediction and the ground truth are both positive

while a true negative is when both the prediction and the ground truth are nega-

tive. The most important metric for our case is that of balanced accuracy since the

datasets are imbalanced, with the negative samples greatly outweighing the pos-

itives. Simply using the normal accuracy metric can not evaluate the classifier

correctly since a specific classifier with a low sensitivity would still score a high

accuracy.

4.2 Localisation evaluation
The second evaluation stage,is to evaluate the network on it’s ability to localise the

blood cell withing the frames of the tests videos. Although a high balanced accuracy

can be a good indicator whether the network can create good probability maps, this

is not always the case. For example, if during the negative patch extraction process

patches are picked in a wide radius around the positive patches, because the positive

and negative samples will have very distinct features, the classifier will be accurate

but won’t be able to localise blood cells correctly. The translation in-variance of the

convolutional neural network would make it so that patches that have a cell in them

would be classified as true positive, regardless whether it’s in the centre of the patch

or not. In the other hand, if negatives are picked in between and close to the positive

samples, it is more difficult for the classifier to have high balanced accuracy but will

be able to estimate the locations of the blood cells more accurately. For this reason,

this second evaluation step is necessary.
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The cell position estimation is evaluated similar way as in [17]. In short, a cell

location estimation is considered to be true positive if it’s in within a distance d of

a manually marked position in the test video frame, where d is .75 of the median

spacing between the ground truth positions. If more than one estimated position

is within distance d to a ground truth position, then only the one closest to the

manually marked cell is considered a true positive while the other one is considered

a false positive. In addition, estimated points that are not within a distance d of

any ground truth positions are also considered false positives. Finally, manually

marked positions that are not matched to any estimated location are considered as

false negative. An example of this evaluation can be seen in seen Fig. 4.1.

Figure 4.1: Blue points are manually marked cell locations while green and blue point are
estimates. The blue circle shows the maximum accepted distance for an estima-
tion to be matched to a ground truth position. The radius d is 0.75 of the median
spacing between the manually marked positions. (A) A correctly estimated cell
position that counts as a true positive. It is inside the accepted distance d of
a ground truth position. A true positive. (B) A manually marked point that
is matched to an estimated point. (C) An estimated point that is too far away
from any ground truth positions. A false positive. (D) Estimated positions that
inside acceptance radius d but other estimates are closer to the matched marked
positions. Counted as false positives. (E) Manually marked positions that are
not matched to an estimation. Counted as false negatives.



4.2. Localisation evaluation 57

With the number of true positive (NT P), number of false negatives (NFN)), and

number of false positives (NFP) defined this way, the number of manually marked

positions Nmanual is:

Nmanual = NT P +NFN

And the number of estimated locations Nest is:

Nest = NT P +NFP

the following metrics are used to evaluate the blood cell location estimation:

true positive rate =
NT P

Nmanual

false discovery rate =
NFP

Nest

Dice’s coefficient =
2NT P

Nmanual +Nest

In an ideal system, the true positive rate and a dice coefficient should be 1 while the

false discovery rate should be 0. Adding to these metrics, not all classifications of

the same Dice are equal since for some the distance of the estimations to the ground

truth can be smaller than others. For this we also include the mean distance of every

true positive to it’s closes ground truth.

As mentioned in a previous section, the binarisation of the probability map and

the localisation of the cells from the binary image requires 3 parameters. The σ for

the gaussian blurring, the height difference H for the extended maxima transform,

and a threshold T for filtering regions with low max intensity. The configuration

of this three parameters can greatly affect the performance of the localisation. To

evaluate the performance of the networks with the same localisation parameters, the

σ , H, and T for each test video were fixed. The values were fixed by maximising

Dice’s coefficient, by performing a grid search over a set of possible parameters, on

the first experiment. To be more precise, for each marked frame of each test video

the parameters the σ , H, and T that maximise the Dice’s coefficient for that frame
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are picked and then, the accumulated parameters from each frame are averaged for

each test video. As a result, for each video a fixed σ , H, and T is used for all the

networks.

4.3 Observations from the results

To show the results 4 tables were created. In the first table the different model

configurations are linked to a specific unique id (Tab. A.1). In the next table, the

classification performance of the models on the validation patches (Tab. B.1) is dis-

played. The third table demonstrates the classification performance of the networks

on the patches extracted from the test videos (Tab. C.1). In the last table, the eval-

uations of blood cell localisation of the models are presented (Tab. D.1). All the

tables can be found in the appendix.

In this section only a subset of the results is shown in the tables Tab. 4.1

and Tab. 4.2. The model unique ids are the same with the ones in the appendix,

just a subset shown here. When referring to model’s by it’s unique id then it’s

configuration, validation, and test performance can be seen in the corresponding

tables. The conclusions and observations are extracted from all the experiments but

only some of the models are shown here for an easier demonstration for the reader.

From the experiments presented in tables Tab.4.1 and Tab. 4.2 we can see that

temporal and mixed channel patches do not offer any particular benefits. It seems

that single channel patches can outperform both these patch extraction techniques.

From the models 35, 37, and 41, (For configurations see Tab. 4.1) all trained

with temporal patches, one can see that using a larger patch size (55 pixels) is bene-

ficial. We believe that particularly large patch sizes can offer temporal information

since the cells move further between individual image captures within a single chan-

nel, meaning that large patches should be used to capture that displacement. We

think that an even bigger patch size is required to capture the temporal information

since the time difference between the frames of the same channel are particularly

large and the displacement of a cell can be too big to fit in smaller patch size. On

the other hand, using a bigger patch size would make the classification harder when
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picking positives close to negatives since the majority of the patches would over-

lap.‘ Smaller patches can still have a positive Dice’s coefficient but they seem to

eliminate useful temporal cues. In addition, when no temporal cues are included

then the 850nm channel only adds random and irrelevant information. For example,

comparing model 4 and 35, both with patch size 21 (Tab. 4.1) but the latter with a

temporal width, the first outperforms the latter while also being simpler and faster

in training (Tab. 4.2).

When it comes to mixed channel patches, the observations are similar to the

the temporal patches when only the 790nm and 850nm channels are used. Because

there is a some time difference between the channels, the patch size must be larger

31 pixels in order to capture temporal information. When comparing models trained

with mixed channel patches and a small patch size, then the model trained with all 3

channels performs better than the one trained only with the 790nm and 850nm chan-

nel. For example, comparing model 11 and 16 (for configurations see Tab. 4.1), the

first one was trained only on 2 channels while the latter on all channel patches, both

with a patch size of 21. The second performed better than the other (Tab. 4.2). We

believe that the confocal channel can give useful information when the patch size is

small, since there is no time difference between the confocal and 790nm channel,

while the 850nm channel includes random irrelevant information that do not help

the classification in a meaningful way. For small patches the cell displacement is not

captured. It is presumed that only using the confocal and the 790nm channel with

a small patch size would be even more beneficial but this was not implemented be-

cause it is believed it won’t give significant benefits over the single channel patches

since, due to the optics of confocal videos, the blood cells are not always visible.

On the other hand, when the patch size is large the model performs better for the

two channel case. Comparing model 15 and 11 (for configuration see Tab. 4.1),

both trained with 2 channel patches, it can be observed that model 15 which has a

large patch size of 45 pixels outperforms the latter (Tab. 4.2). This is an indication

that including the 890nm channel can give useful temporal information given that

patch size is large enough.
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Although using temporal patches and especially mixed channels can include

additional useful temporal information, the methods do not show any benefits when

being compared to single channel techniques.

Another way to use temporal information is to increase the contrast of the

images using video normalisation method described in [15] prior to training and

classifying. Model 22 with a patch size of 23 showed no significant improvement

and so that idea was also scrapped since it added an additional layer of complexity

without benefiting learning.

A bigger factor for getting better localisation performance was proved to be a

random vertical and horizontal translation when sampling the patches during train-

ing. In particular, the combination of a patch size of 23 and a random translation of

5 pixels gave the two best localisation results with the lead being on model 6 with a

Dice of 0.789 and a 19 having a 0.786 as a close second 4.2. The patch size must be

sufficiently large enough so that the random translations do not completely alter the

sample. For example, when using a patch size of 21 with a random translation of

5 pixels such as model 10 then the localisation performance is bad. A bigger patch

size of 25 pixels can also support a big random translation, like model 7, but a patch

size of 23 pixels is shown to be better.

All the previous examples used the circle negative patch extraction strategy

limited within the vessel mask. One of the biggest factors of the localisation perfor-

mance is the way is the negative are picked prior to learning. By comparing models

6, 42, and 43 (for configurations see 4.1) one can see how much the negative patch

extraction process can affect the final localisation performance of the network (4.2).

The three models were trained with the same configuration except the way the nega-

tives are picked before training. In short, picking negative samples at a big distance

from the positives creates bad probability maps while a smaller radius have a bet-

ter separation. Finally, the smart negative sample picking described in the previous

chapter allows for a much cleaner probability map with a higher blob separation.

This effect is demonstrated in Fig. 4.2.
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(a) (b) (c)
Figure 4.2: A comparison of the probabilities map created by 3 different patch extraction pro-

cesses. (a) Using a rectangle patch extraction with a radius of 31 pixels. Because
negative patch samples are picked in a square 31 pixels away from the blood cells the
network doesn’t classify pixels close to blood cells as negative. As a result, the blobs
of high intensities are merged together leading to a probability of a bad quality with no
clear separation between the cells. (b) Rectangle negative patch extraction in a 21 pixel
radius around the positive cell. The results are better but some blobs are not clearly
separated because not enough negative samples are picked between cells. (c) Using
a circle patch extraction and limiting the negative positions within the vessel mask of
the training videos. The separation between the blobs is much cleaner because the net-
work was trained on many hard negative examples between the cells and parallel to the
capillaries instead of around it.
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Model uid Channels Patch Size Translation
Pixels

Preprpocess

12 2 31 2 FALSE

14 2 45 2 FALSE

15 2 45 2 FALSE

10 2 21 5 FALSE

11 2 21 2 FALSE

16 3 21 2 FALSE

18 3 35 2 FALSE

21 3 27 2 FALSE

4 1 21 2 FALSE

5 1 23 2 FALSE

22 1 23 2 TRUE

6 1 23 5 FALSE

19 1 23 5 FALSE

7 1 25 5 FALSE

8 1 21 2 FALSE

9 1 21 5 FALSE

35 temporal 21 2 FALSE

37 temporal 55 5 FALSE

41 temporal 35 2 FALSE

42(1) 1 23 3 FALSE

43(1) 1 23 3 FALSE

Model uid Balanced
Accuracy

Accuracy Sensitivity Specifiticy

12 0.823 0.822 0.825 0.821

14 0.808 0.813 0.803 0.814

15 0.807 0.829 0.783 0.832

10 0.772 0.731 0.819 0.725

11 0.811 0.818 0.802 0.819

16 0.806 0.784 0.830 0.781

18 0.825 0.833 0.816 0.834

21 0.805 0.827 0.779 0.830

4 0.830 0.821 0.840 0.820

5 0.824 0.833 0.813 0.835

22 0.780 0.788 0.771 0.790

6 0.814 0.801 0.828 0.800

19 0.809 0.797 0.821 0.796

7 0.822 0.828 0.815 0.828

8 0.821 0.790 0.858 0.785

9 0.772 0.788 0.752 0.791

35 0.813 0.779 0.853 0.774

37 0.773 0.733 0.818 0.727

41 0.815 0.802 0.830 0.801

42(3) 0.832 0.813 0.862 0.803

43(4) 0.832 0.832 0.833 0.832

Table 4.1: (left) Model configurations. For a full explanation of column names please see A.1 in
the appendix.
(right) Classification performance on validation patches.
(1) Model trained with negatives extracted in a rectangle negative search window with
radius of 31 pixels.
(1) Trained with a rectangle negative search window with radius of 31 pixels.
(3, 4) Validation patches extracted with the same method as the training patches, hence
the good validation accuracy.

Model uid Balanced
Accuracy

Accuracy Sensitivity Specificity

12 0.803 0.825 0.777 0.828

14 0.759 0.823 0.684 0.834

15 0.798 0.823 0.769 0.826

10 0.780 0.804 0.752 0.809

11 0.801 0.860 0.731 0.871

16 0.787 0.827 0.737 0.837

18 0.819 0.800 0.843 0.795

21 0.774 0.807 0.734 0.813

4 0.806 0.785 0.831 0.782

5 0.818 0.796 0.843 0.792

22 0.774157 0.804 0.738 0.810

6 0.794 0.772 0.820 0.769

19 0.807 0.780 0.838 0.775

7 0.795 0.773 0.820 0.769

8 0.823 0.801 0.847 0.798

9 0.801 0.806 0.794 0.807

35 0.807 0.797 0.818 0.796

37 0.808 0.773 0.850 0.767

41 0.807 0.775 0.845 0.768

42(1) 0.690 0.561 0.836 0.543

43 0.768 0.723 0.818 0.717

Model uid Dice’s
coefficient

True posi-
tive rate

False discov-
ery rate

True Posi-
tive Mean
Distance

12 0.742 0.782 0.270 5.047

14 0.709 0.778 0.329 4.795

15 0.768 0.838 0.281 4.538

10 0.695 0.617 0.184 5.328

11 0.703 0.716 0.249 4.441

16 0.776 0.854 0.283 4.148

18 0.774 0.853 0.274 4.142

21 0.723 0.850 0.357 4.452

4 0.765 0.879 0.318 4.245

5 0.772 0.903 0.316 4.313

22 0.753858 0.883 0.337 4.770

6 0.789 0.84572 0.252 4.423

19 0.786 0.850 0.259 4.566

7 0.773 0.856 0.284 4.278

8 0.776 0.880 0.299 4.317

9 0.712 0.646 0.188 4.818

35 0.759 0.875 0.326 4.725

37 0.765 0.766 0.223 4.764

41 0.732 0.906 0.380 4.569

42 0.621 0.508 0.189 5.430

43 0.768 0.723 0.818 0.717

Table 4.2: (left) Classification performance on patches from test videos.
(right) Localisation performance on test patches.
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4.4 Best pipeline configuration

Following careful experimentation, we have arrived at a pipeline including vessel

detector, cell classifier and positive/negative bounding boxes that has shown the

most promising Dice’s coefficient and shows the greatest ability to generalise across

data that it has never seen, the parameters for this classification network are outlined

here.

For the vessel masks the following parameters were used: The frames were

first blurred with a Gaussian blur with sigma 1. Then we used the normalisation

from [15] described in the methodology chapter and then applied motion-contrast

enhancement on the video with the histogram equalisation as described. The video

stack was then flattened to create a single image representing the standard deviation

in intensity at each location within the image.

The standard deviation image then has it’s contrast enhanced with adaptive his-

togram equalisation after being Gaussian blurred with a sigma 1. The frangi filter

is applied on the with an alpha and beta of .5 ( for an explanation of the parame-

ters please see skimage.filters.frangi). The frangi image is then contrast enhanced

with an adaptive equalisation histogram. The frangi image is then thresholded with

Otsu’s method and a threshold sensitivity of .5 meaning we take half of the thresh-

old value otsu’s method returns. The morphological opening and closing happens

with a square structuring element of size 5. After the opening two morphologi-

cal binary dilation are applied. In the end small objects are removed with skim-

age.morphology.remove small objects with an area smaller than 700.

For training the network the following parameters were decided: The network

should be trained with a patch size of 23 pixels. The circle negative patch extraction

process is followed with the negative position limited inside the vessel mask. The

dataset should be standardised to a mean and variance of .5. A small random vertical

and horizontal translation of 5 pixels during sampling was found to give the best

result. The batch size used was 512 samples. The learning rate starts from 0.001 and

lowers by 10−1 every 10 epochs the validation accuracy doesn’t improve. After 20

epochs of no validation accuracy improvement the training is stopped. The model
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structure used is (as printed from the pytorch module) :
CNN(

(convolutional): Sequential(

(0): Conv2d(1, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))

(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(2): MaxPool2d(kernel_size=(3, 3), stride=2, padding=0, dilation=1, ceil_mode=False)

(3): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))

(4): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(5): ReLU()

(6): AvgPool2d(kernel_size=3, stride=2, padding=1)

(7): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))

(8): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(9): ReLU()

(10): AvgPool2d(kernel_size=3, stride=2, padding=1)

)

(dense): Sequential(

(0): Linear(in_features=576, out_features=64, bias=True)

(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(2): ReLU()

(3): Dropout(p=0.5, inplace=False)

(4): Linear(in_features=64, out_features=32, bias=True)

(5): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(6): ReLU()

(7): Dropout(p=0.5, inplace=False)

(8): Linear(in_features=32, out_features=2, bias=True)

)

For the binarisation of the probability map and the cell location extraction pro-

cess, the following parameters should be used: σ = 1.57, H = 0.34, T = .59. These

values were produced as the mean of the σs Hs and T s that maximised each test

video.
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General Conclusions

In this thesis we present a pipeline that takes stabilised retinal images, extracts ves-

sel locations, identifies the individual cells within the vessels and then is able to

track them with time. This pipeline has been implemented as a fully automated tool

where one has never been produced before. This automated pipeline also replaces a

very time intensive process which prevented this power imaging test from becom-

ing clinically viable. With the improved pipeline the imagining technique can now

be expanded. We believe that our application could be have a great impact in the

health of people and we hope it can serve as an useful early biomarker for doctors

to administer treatments for people with multiple diseases at an early stage, where

intervention is still possible, to slow down their progression.

5.0.1 Future work

This project faced a classic deep learning challenge, there is plenty of existing data

but few labels. Further the labelling process is laborious. So while a significant

number of labels were generated for this project, the network could still not gener-

alise as much as we wanted. This suggests that there were characteristic differences

between the training and validation sets which need to be captured for the network

to perform more robustly. In the future, we hope that collecting samples from a

greater variability of subjects could improve the performance of the network.

In our labels for this project most cells have some characteristics that the net-

works can identify. The classifier can some times incorrectly classify cell patches as

negatives leading to a false negative sample. We believe that the false negative ex-
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amples share common characteristics that confuse the classification process. A few

steps that we hope to investigate, would be to collect and analyse the false negative

examples in order to include more samples that share these feature in the training

process. We hope that the GUI tool that was build for picking up missed cells from

the estimated locations can make this process easy.

In the evaluation chapter it was demonstrated that the negative patch extrac-

tion process can have a great impact in the localisation process. By picking points

in between cells there is a cleaner separation in the estimations while by picking

patches around the cells the probability blobs merge together. We believe that we

could combine two negative patch extraction processes for a more accurate network.

For example, if one network only picks negative samples perpendicular to the flow

then the network could have good segmentation properties. By running a network

trained on negative patches parallel to the flow on the segmentation the previous

network gives we believe that the number of false positives and the distance of the

estimates from the ground truth could be decreased.
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Model configurations

Model uid Channels Patch Size Translation
Pixels

Preprpocess

0 1 17 2 FALSE

1 1 19 2 FALSE

2 1 21 2 FALSE

3 1 25 2 FALSE

4 1 21 2 FALSE

5 1 23 2 FALSE

6 1 23 5 FALSE

7 1 25 5 FALSE

8 1 21 2 FALSE

9 1 21 5 FALSE

10 2 21 5 FALSE

11 2 21 2 FALSE

12 2 31 2 FALSE

13 2 45 2 FALSE

14 2 45 2 FALSE

15 2 45 2 FALSE

16 3 21 2 FALSE

17 3 29 3 FALSE

18 3 35 2 FALSE

19 1 23 5 FALSE
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Model uid Channels Patch Size Translation
Pixels

Preprpocess

20 3 29 3 FALSE

21 3 27 2 FALSE

22 1 23 2 TRUE

23 2 41 2 FALSE

24 2 39 2 FALSE

25 3 29 2 FALSE

26 3 29 2 TRUE

27 3 29 2 TRUE

28 3 35 2 FALSE

29 1 23 7 FALSE

30 1 23 5 FALSE

31 1 21 5 FALSE

32 1 23 5 FALSE

33 1 17 5 FALSE

34 1 25 5 FALSE

35 temporal 21 2 FALSE

36 temporal 35 2 FALSE

37 temporal 55 5 FALSE

41 temporal 35 2 FALSE

42(1) 1 23 3 FALSE

43(2) 1 23 3 FALSE

Table A.1: Model configurations.
uid: Unique model id that links this table to the performance evaluation tables.
channels: The number of channels for the patch extraction process. When 3
then it’s the mixed channel case with the confocal, 790nm, and the registered
850nm channel. When 2 then it’s just the 790nm and the registered 850nm.
When 1 then only the 790nm channel is used. When ’temporal’ then temporal
patches were extracted with temporal width 1.
Translation pixels: The number of random vertical and horizontal translation
in pixels when the patch is sampled.
Preprocess: True when the video data were processed with [15] prior to training
and classification.
(1) Model trained with rectangle negative patch extraction with negative search
radius of 31.
(2) Model trained with rectangle negative patch extraction with negative search
radius of 21.
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Model classification evaluation with

validation data

Model uid Balanced
Accuracy

Accuracy Sensitivity Specificity

0 0.820 0.820 0.819 0.820

1 0.822 0.802 0.846 0.799

2 0.824 0.841 0.804 0.843

3 0.825 0.881 0.761 0.889

4 0.830 0.821 0.840 0.820

5 0.824 0.833 0.813 0.835

6 0.814 0.801 0.828 0.800

7 0.822 0.828 0.815 0.828

8 0.821 0.790 0.858 0.785

9 0.772 0.788 0.752 0.791

10 0.772 0.731 0.819 0.725

11 0.811 0.818 0.802 0.819

12 0.823 0.822 0.825 0.821

13 0.812 0.815 0.809 0.815

14 0.808 0.813 0.803 0.814

15 0.807 0.829 0.783 0.832
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Model uid Balanced
Accuracy

Accuracy Sensitivity Specificity

16 0.806 0.784 0.830 0.781

17 0.836 0.826 0.847 0.825

18 0.825 0.833 0.816 0.834

19 0.809 0.797 0.821 0.796

20 0.816 0.813 0.820 0.812

21 0.805 0.827 0.779 0.830

22 0.780 0.788 0.771 0.790

23 0.818 0.807 0.831 0.806

24 0.811 0.806 0.817 0.805

25 0.811 0.816 0.805 0.817

26 0.783 0.750 0.820 0.746

27 0.814 0.788 0.844 0.784

28 0.815 0.778 0.857 0.773

29 0.784 0.764 0.807 0.761

30 0.781 0.737 0.832 0.730

31 0.763 0.696 0.839 0.686

32 0.803 0.830 0.773 0.834

33 0.769 0.789 0.747 0.792

34 0.788 0.764 0.816 0.761

35 0.813 0.779 0.853 0.774

36 0.815 0.802 0.830 0.801

37 0.773 0.733 0.818 0.727

41 0.815 0.802 0.830 0.801

42 0.832 0.813 0.862 0.803

43 0.832 0.832 0.833 0.832

Table B.1: Classification performance with the patches from the validation dataset.
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Model classification evaluation with

test data

Model uid Balanced
Accuracy

Accuracy Sensitivity Specificity

0 0.796 0.820 0.767 0.826

1 0.790 0.791 0.788 0.793

2 0.802 0.844 0.751 0.853

3 0.801 0.875 0.712 0.889

4 0.806 0.785 0.831 0.782

5 0.818 0.796 0.843 0.792

6 0.794 0.772 0.820 0.769

7 0.795 0.773 0.820 0.769

8 0.823 0.801 0.847 0.798

9 0.801 0.806 0.794 0.807

10 0.780 0.804 0.752 0.809

11 0.801 0.860 0.731 0.871

12 0.803 0.825 0.777 0.828

13 0.753 0.734 0.776 0.729

14 0.759 0.823 0.684 0.834

15 0.798 0.823 0.769 0.826
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Model uid Balanced
Accuracy

Accuracy Sensitivity Specificity

16 0.787 0.827 0.737 0.837

17 0.808 0.810 0.806 0.810

18 0.819 0.800 0.843 0.795

19 0.807 0.780 0.838 0.775

20 0.784 0.767 0.803 0.766

21 0.774 0.807 0.734 0.813

22 0.774157 0.804 0.738 0.810

23 0.775 0.715 0.846 0.704

24 0.791 0.787 0.797 0.786

25 0.778 0.812 0.738 0.818

26 0.779 0.747 0.816 0.742

27 0.773 0.717 0.840 0.706

28 0.763 0.681 0.858 0.668

29 0.793 0.787 0.801 0.786

30 0.786 0.741 0.839 0.733

31 0.768 0.688 0.862 0.674

32 0.804 0.828 0.775 0.833

33 0.769 0.794 0.739 0.800

34 0.789 0.757 0.829 0.749

35 0.807 0.797 0.818 0.796

36 0.811 0.790 0.835 0.787

37 0.808 0.773 0.850 0.767

41 0.807 0.775 0.845 0.768

42(∗) 0.690 0.561 0.836 0.543

43(∗) 0.768 0.723 0.818 0.717

Table C.1: Classification performance from patches extracted from the test videos.
(*) Although the negative patch extraction was different than the rest videos
during training, the negative patch extraction process for testing is the same
for all videos. That’s the reason model 42 has a particularly bad score since it
wasn’t trained with negative cells that are close to positives.
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Model localisation evaluation with

test data

Model uid Dice’s
coefficient

True posi-
tive rate

False discov-
ery rate

True Posi-
tive Mean
Distance

0 0.754 0.337 0.882 4.448

1 0.754 0.882 0.337 4.448

2 0.774 0.830 0.271 3.981

3 0.766 0.876 0.301 4.142

4 0.765 0.879 0.318 4.245

5 0.772 0.903 0.316 4.313

6 0.789 0.84572 0.252 4.423

7 0.773 0.856 0.284 4.278

8 0.776 0.880 0.299 4.317

9 0.712 0.646 0.188 4.818

10 0.695 0.617 0.184 5.328

11 0.703 0.716 0.249 4.441

12 0.742 0.782 0.270 5.047

13 0.711 0.858 0.386 5.414

14 0.709 0.778 0.329 4.795

15 0.768 0.838 0.281 4.538



74

Model uid Dice’s
coefficient

True posi-
tive rate

False discov-
ery rate

True Posi-
tive Mean
Distance

16 0.776 0.854 0.283 4.148

17 0.771 0.832 0.263 4.764

18 0.774 0.853 0.274 4.142

19 0.786 0.850 0.259 4.566

20 0.746 0.815 0.297 5.016

21 0.723 0.850 0.357 4.452

22 0.753858 0.883 0.337 4.770

23 0.742 0.847 0.326 4.918

24 0.747 0.818 0.302 4.651

25 0.703 0.755 0.298 4.622

26 0.753 0.821 0.291 5.117

27 0.732 0.829 0.336 5.287

28 0.714 0.787 0.320 5.574

29 0.745 0.709 0.199 4.462

30 0.730 0.694 0.214 4.724

31 0.699 0.606 0.162 5.127

32 0.769 0.764 0.216 4.511

33 0.674 0.589 0.191 5.757

34 0.723 0.659 0.182 5.232

35 0.759 0.875 0.326 4.725

36 0.732 0.906 0.380 4.569

37 0.765 0.766 0.223 4.764

41 0.732 0.906 0.380 4.569

42 0.621 0.508 0.189 5.430

43 0.768 0.723 0.818 0.717

Table D.1: Model localisation performance on the test videos.
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Sample results on test videos
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(a)

(b)
Figure E.1: Location estimation on the video shown in this media link. Because part of the

frames were never marked, even with the existence of cells, some vessels were
manually cropped to avoid a bad score from incomplete manual marking.
(a) The probability map. For the the probability map video click this
media link. For the probability map with the estimated positions marked click
this media link.
(b) Evaluation results for a frame of the video. For a video with the estimated
locations click this media link

https://youtu.be/Y-RavYV5Il8
https://youtu.be/DaimN5EgXlk
https://youtu.be/u6qt727-tdk
https://youtu.be/Kyee3UkNccY
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(a)

(b)
Figure E.2: Location estimation on the video shown in this media link.

(a) The probability map. For the the probability map video click this
media link. For the probability map with the estimated positions marked click
this media link.
(b) Evaluation results for a frame of the video. For a video with the estimated
locations click this media link

https://youtu.be/89MZlM7j11E
https://youtu.be/gd48Z_3tXg0
https://youtu.be/89MZlM7j11E
https://youtu.be/OOPpqSJh664
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(a)

(b)
Figure E.3: Location estimation on the video shown in this media link.

(a) The probability map. For the the probability map video click this
media link. For the probability map with the estimated positions marked click
this media link.
(b) Evaluation results for a frame of the video. For a video with the estimated
locations click this media link

https://youtu.be/fcauszoD2bw
https://youtu.be/-8T5hPNg66Q
https://youtu.be/oSKZ_rlE4kY
https://youtu.be/t5GZZzRfaH0


Appendix F

Colophon

The code for this thesis was developed using python. In addition to the standard

python libraries the following modules have been used:

• numpy [63]

Provides useful n-dimensional array operations. Used throughout the project.

• pytorch

A python machine learning library based on the Torch library that supports

automatic differentiation [52]. Used for creating and training the models.

• torchvision

A package that complements pytorch. Was used to for batching, transforma-

tions, dataset creation.

• Opencv [62]

A computer vision library with many build in algorithms. Was used for image

processing, template matching, and feature matching.

• scickit-image [64]

Provides image processing algorithms. Used for image processing such as

morphological operations and contrast enhancement.

• scickit-learn [65]

A machine learning library for python. Has a fast and easy to use nearest

neighbour implementation that was used in the thesis.
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• PIL

The Python Imaging Library. Useful for easily saving images.

• pandas [66]

A data analysis and manipulation tool. Used mainly for displaying results

during training.

• mahotas [54]

An image processing library used for a regmax function to implement

extended-maxima transform

• tqdm [67]

A library that provides a progress meter. Was used for multiple occasions

where some operations would take a certain time so the user can have a visual

feedback.

• shutil

Offers high level operations on files. Used for removing directories.

• PyQt5 [68]

Used for creating GUI tools.
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