-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDESCRIPTION
76 lines (76 loc) · 1.83 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
Package: perturbatr
Type: Package
Title: Statistical Analysis of High-Throughput Genetic Perturbation Screens
Version: 1.7.0
Authors@R: person("Simon", "Dirmeier",
email = "[email protected]", role = c("aut", "cre"))
Maintainer: Simon Dirmeier <[email protected]>
URL: https://github.com/cbg-ethz/perturbatr
BugReports: https://github.com/cbg-ethz/perturbatr/issues
Description: perturbatr does stage-wise analysis of large-scale genetic
perturbation screens for integrated data sets consisting of multiple screens.
For multiple integrated perturbation screens a hierarchical model that
considers the variance between different biological conditions is fitted.
The resulting list of gene effects is then further extended using a network
propagation algorithm to correct for false negatives.
License: GPL-3
LazyData: TRUE
RoxygenNote: 6.1.1
Depends:
R (>= 3.5),
methods,
stats
Imports:
dplyr,
ggplot2,
tidyr,
assertthat,
lme4,
splines,
igraph,
foreach,
parallel,
doParallel,
diffusr,
lazyeval,
tibble,
grid,
utils,
graphics,
scales,
magrittr,
formula.tools,
rlang
biocViews: ImmunoOncology, Regression, CellBasedAssays, Network
Suggests:
testthat,
lintr,
knitr,
rmarkdown,
BiocStyle
VignetteBuilder: knitr
Collate:
'methods_getters.R'
'util_enums.R'
'class_analysed.R'
'class_data.R'
'data.R'
'inference_diffuse.R'
'inference_diffuse_mrw.R'
'inference_lmm_locfdr.R'
'inference_lmm_fdr.R'
'inference_lmm.R'
'inference_lmm_model_data.R'
'methods_combine.R'
'methods_filter.R'
'methods_show.R'
'perturbatr-package.R'
'plot_data.R'
'plot_diffusion.R'
'plot_hm.R'
'util_as.R'
'util_effect_matrix.R'
'util_functions.R'
'util_graph.R'
'util_sampler.R'
Encoding: UTF-8