-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmixup.py
531 lines (490 loc) · 20.2 KB
/
mixup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
import numpy as np
import torch
from torchvision.ops import roi_align
def one_hot(x, num_classes, on_value=1.0, off_value=0.0, device="cuda"):
x = x.long().view(-1, 1)
return torch.full((x.size()[0], num_classes), off_value, device=device).scatter_(
1, x, on_value
)
def get_featuremaps(label_maps_topk, num_classes, device="cuda"):
label_maps_topk_sizes = label_maps_topk[0].size()
label_maps = torch.full(
[
label_maps_topk.size(0),
num_classes,
label_maps_topk_sizes[2],
label_maps_topk_sizes[3],
],
0,
dtype=torch.float32,
device=device,
)
for i, (_label_map, _label_topk) in enumerate(zip(label_maps, label_maps_topk)):
label_maps[i] = _label_map.scatter_(
0, _label_topk[1][:, :, :].long(), _label_topk[0][:, :, :].float()
)
return label_maps
def get_label(label_maps, batch_coords, label_size=1, device="cuda"):
"""
Adapted from https://github.com/naver-ai/relabel_imagenet/blob/main/utils/relabel_functions.py
Here we generate label for patch tokens and cls token separately and concat them together if given label_size>1
"""
num_batches = label_maps.size(0)
target_label = roi_align(
input=label_maps,
boxes=torch.cat(
[
torch.arange(num_batches).view(num_batches, 1).float().to(device),
batch_coords.float() * label_maps.size(3) - 0.5,
],
1,
),
output_size=(label_size, label_size),
)
if label_size > 1:
target_label_cls = roi_align(
input=label_maps,
boxes=torch.cat(
[
torch.arange(num_batches).view(num_batches, 1).float().to(device),
batch_coords.float() * label_maps.size(3) - 0.5,
],
1,
),
output_size=(1, 1),
)
B, C, H, W = target_label.shape
target_label = target_label.view(B, C, H * W)
target_label = torch.cat([target_label_cls.view(B, C, 1), target_label], dim=2)
target_label = torch.nn.functional.softmax(target_label.squeeze(), 1)
return target_label
def get_labelmaps_with_coords(
label_maps_topk,
num_classes,
on_value=1.0,
off_value=0.0,
label_size=1,
device="cuda",
):
"""
Adapted from https://github.com/naver-ai/relabel_imagenet/blob/main/utils/relabel_functions.py
Generate the target label map for training from the given bbox and raw label map
"""
# trick to get coords_map from label_map
random_crop_coords = label_maps_topk[:, 2, 0, 0, :4].view(-1, 4)
random_crop_coords[:, 2:] += random_crop_coords[:, :2]
random_crop_coords = random_crop_coords.to(device)
# trick to get ground truth from label_map
ground_truth = label_maps_topk[:, 2, 0, 0, 5].view(-1).to(dtype=torch.int64)
ground_truth = one_hot(
ground_truth, num_classes, on_value=on_value, off_value=off_value, device=device
)
# get full label maps from raw topk labels
label_maps = get_featuremaps(
label_maps_topk=label_maps_topk, num_classes=num_classes, device=device
)
# get token-level label and ground truth
token_label = get_label(
label_maps=label_maps,
batch_coords=random_crop_coords,
label_size=label_size,
device=device,
)
B, C = token_label.shape[:2]
token_label = token_label * on_value + off_value
if label_size == 1:
return torch.cat([ground_truth.view(B, C, 1), token_label.view(B, C, 1)], dim=2)
else:
return torch.cat([ground_truth.view(B, C, 1), token_label], dim=2)
def mixup_target(
target, num_classes, lam=1.0, smoothing=0.0, device="cuda", label_size=1
):
"""
generate and mix target from the given label maps
target: label maps/ label maps with coords
num_classes: number of classes for the target
lam: lambda for mixup target
"""
off_value = smoothing / num_classes
on_value = 1.0 - smoothing + off_value
if len(target.size()) > 2:
if target.size(1) == 3:
y1 = get_labelmaps_with_coords(
target,
num_classes,
on_value=on_value,
off_value=off_value,
device=device,
label_size=label_size,
)
y2 = y1.flip(0)
# y2 = get_labelmaps_with_coords(target.flip(0), num_classes, on_value=on_value, off_value=off_value, device=device, label_size=label_size)
else:
raise ValueError("Not supported label type")
else:
y1 = one_hot(
target, num_classes, on_value=on_value, off_value=off_value, device=device
)
y2 = one_hot(
target.flip(0),
num_classes,
on_value=on_value,
off_value=off_value,
device=device,
)
return y1 * lam + y2 * (1.0 - lam)
def rand_bbox(img_shape, lam, margin=0.0, count=None):
"""Standard CutMix bounding-box
Generates a random square bbox based on lambda value. This impl includes
support for enforcing a border margin as percent of bbox dimensions.
Args:
img_shape (tuple): Image shape as tuple
lam (float): Cutmix lambda value
margin (float): Percentage of bbox dimension to enforce as margin (reduce amount of box outside image)
count (int): Number of bbox to generate
"""
ratio = np.sqrt(1 - lam)
img_h, img_w = img_shape[-2:]
cut_h, cut_w = int(img_h * ratio), int(img_w * ratio)
margin_y, margin_x = int(margin * cut_h), int(margin * cut_w)
cy = np.random.randint(0 + margin_y, img_h - margin_y, size=count)
cx = np.random.randint(0 + margin_x, img_w - margin_x, size=count)
yl = np.clip(cy - cut_h // 2, 0, img_h)
yh = np.clip(cy + cut_h // 2, 0, img_h)
xl = np.clip(cx - cut_w // 2, 0, img_w)
xh = np.clip(cx + cut_w // 2, 0, img_w)
return yl, yh, xl, xh
def rand_bbox_minmax(img_shape, minmax, count=None):
"""Min-Max CutMix bounding-box
Inspired by Darknet cutmix impl, generates a random rectangular bbox
based on min/max percent values applied to each dimension of the input image.
Typical defaults for minmax are usually in the .2-.3 for min and .8-.9 range for max.
Args:
img_shape (tuple): Image shape as tuple
minmax (tuple or list): Min and max bbox ratios (as percent of image size)
count (int): Number of bbox to generate
"""
assert len(minmax) == 2
img_h, img_w = img_shape[-2:]
cut_h = np.random.randint(
int(img_h * minmax[0]), int(img_h * minmax[1]), size=count
)
cut_w = np.random.randint(
int(img_w * minmax[0]), int(img_w * minmax[1]), size=count
)
yl = np.random.randint(0, img_h - cut_h, size=count)
xl = np.random.randint(0, img_w - cut_w, size=count)
yu = yl + cut_h
xu = xl + cut_w
return yl, yu, xl, xu
def cutmix_bbox_and_lam(
img_shape, lam, ratio_minmax=None, correct_lam=True, count=None
):
"""Generate bbox and apply lambda correction."""
if ratio_minmax is not None:
yl, yu, xl, xu = rand_bbox_minmax(img_shape, ratio_minmax, count=count)
else:
yl, yu, xl, xu = rand_bbox(img_shape, lam, count=count)
if correct_lam or ratio_minmax is not None:
bbox_area = (yu - yl) * (xu - xl)
lam = 1.0 - bbox_area / float(img_shape[-2] * img_shape[-1])
return (yl, yu, xl, xu), lam
class TokenLabelMixup:
"""Mixup/Cutmix with label that applies different params to each element or whole batch
Adapted from https://github.com/rwightman/pytorch-image-models/blob/master/timm/data/mixup.py
Args:
mixup_alpha (float): mixup alpha value, mixup is active if > 0.
cutmix_alpha (float): cutmix alpha value, cutmix is active if > 0.
cutmix_minmax (List[float]): cutmix min/max image ratio, cutmix is active and uses this vs alpha if not None.
prob (float): probability of applying mixup or cutmix per batch or element
switch_prob (float): probability of switching to cutmix instead of mixup when both are active
mode (str): how to apply mixup/cutmix params (per 'batch', 'pair' (pair of elements), 'elem' (element)
correct_lam (bool): apply lambda correction when cutmix bbox clipped by image borders
label_smoothing (float): apply label smoothing to the mixed target tensor
num_classes (int): number of classes for target
label_size (int): target label size
"""
def __init__(
self,
mixup_alpha=1.0,
cutmix_alpha=0.0,
cutmix_minmax=None,
prob=1.0,
switch_prob=0.5,
mode="batch",
correct_lam=True,
label_smoothing=0.1,
num_classes=1000,
label_size=1,
):
self.mixup_alpha = mixup_alpha
self.cutmix_alpha = cutmix_alpha
self.cutmix_minmax = cutmix_minmax
if self.cutmix_minmax is not None:
assert len(self.cutmix_minmax) == 2
# force cutmix alpha == 1.0 when minmax active to keep logic simple & safe
self.cutmix_alpha = 1.0
self.mix_prob = prob
self.switch_prob = switch_prob
self.label_smoothing = label_smoothing
self.num_classes = num_classes
self.mode = mode
self.correct_lam = (
correct_lam # correct lambda based on clipped area for cutmix
)
self.mixup_enabled = (
True # set to false to disable mixing (intended tp be set by train loop)
)
self.label_size = label_size
def _params_per_elem(self, batch_size):
lam = np.ones(batch_size, dtype=np.float32)
use_cutmix = np.zeros(batch_size, dtype=np.bool)
if self.mixup_enabled:
if self.mixup_alpha > 0.0 and self.cutmix_alpha > 0.0:
use_cutmix = np.random.rand(batch_size) < self.switch_prob
lam_mix = np.where(
use_cutmix,
np.random.beta(
self.cutmix_alpha, self.cutmix_alpha, size=batch_size
),
np.random.beta(self.mixup_alpha, self.mixup_alpha, size=batch_size),
)
elif self.mixup_alpha > 0.0:
lam_mix = np.random.beta(
self.mixup_alpha, self.mixup_alpha, size=batch_size
)
elif self.cutmix_alpha > 0.0:
use_cutmix = np.ones(batch_size, dtype=np.bool)
lam_mix = np.random.beta(
self.cutmix_alpha, self.cutmix_alpha, size=batch_size
)
else:
assert (
False
), "One of mixup_alpha > 0., cutmix_alpha > 0., cutmix_minmax not None should be true."
lam = np.where(
np.random.rand(batch_size) < self.mix_prob,
lam_mix.astype(np.float32),
lam,
)
return lam, use_cutmix
def _params_per_batch(self):
lam = 1.0
use_cutmix = False
if self.mixup_enabled and np.random.rand() < self.mix_prob:
if self.mixup_alpha > 0.0 and self.cutmix_alpha > 0.0:
use_cutmix = np.random.rand() < self.switch_prob
lam_mix = (
np.random.beta(self.cutmix_alpha, self.cutmix_alpha)
if use_cutmix
else np.random.beta(self.mixup_alpha, self.mixup_alpha)
)
elif self.mixup_alpha > 0.0:
lam_mix = np.random.beta(self.mixup_alpha, self.mixup_alpha)
elif self.cutmix_alpha > 0.0:
use_cutmix = True
lam_mix = np.random.beta(self.cutmix_alpha, self.cutmix_alpha)
else:
assert (
False
), "One of mixup_alpha > 0., cutmix_alpha > 0., cutmix_minmax not None should be true."
lam = float(lam_mix)
return lam, use_cutmix
def _mix_elem(self, x):
batch_size = len(x)
lam_batch, use_cutmix = self._params_per_elem(batch_size)
x_orig = x.clone() # need to keep an unmodified original for mixing source
for i in range(batch_size):
j = batch_size - i - 1
lam = lam_batch[i]
if lam != 1.0:
if use_cutmix[i]:
(yl, yh, xl, xh), lam = cutmix_bbox_and_lam(
x[i].shape,
lam,
ratio_minmax=self.cutmix_minmax,
correct_lam=self.correct_lam,
)
x[i][:, yl:yh, xl:xh] = x_orig[j][:, yl:yh, xl:xh]
lam_batch[i] = lam
else:
x[i] = x[i] * lam + x_orig[j] * (1 - lam)
return torch.tensor(lam_batch, device=x.device, dtype=x.dtype).unsqueeze(1)
def _mix_pair(self, x):
batch_size = len(x)
lam_batch, use_cutmix = self._params_per_elem(batch_size // 2)
x_orig = x.clone() # need to keep an unmodified original for mixing source
for i in range(batch_size // 2):
j = batch_size - i - 1
lam = lam_batch[i]
if lam != 1.0:
if use_cutmix[i]:
(yl, yh, xl, xh), lam = cutmix_bbox_and_lam(
x[i].shape,
lam,
ratio_minmax=self.cutmix_minmax,
correct_lam=self.correct_lam,
)
x[i][:, yl:yh, xl:xh] = x_orig[j][:, yl:yh, xl:xh]
x[j][:, yl:yh, xl:xh] = x_orig[i][:, yl:yh, xl:xh]
lam_batch[i] = lam
else:
x[i] = x[i] * lam + x_orig[j] * (1 - lam)
x[j] = x[j] * lam + x_orig[i] * (1 - lam)
lam_batch = np.concatenate((lam_batch, lam_batch[::-1]))
return torch.tensor(lam_batch, device=x.device, dtype=x.dtype).unsqueeze(1)
def _mix_batch(self, x):
lam, use_cutmix = self._params_per_batch()
if lam == 1.0:
return 1.0
if use_cutmix:
(yl, yh, xl, xh), lam = cutmix_bbox_and_lam(
x.shape,
lam,
ratio_minmax=self.cutmix_minmax,
correct_lam=self.correct_lam,
)
x[:, :, yl:yh, xl:xh] = x.flip(0)[:, :, yl:yh, xl:xh]
else:
x_flipped = x.flip(0).mul_(1.0 - lam)
x.mul_(lam).add_(x_flipped)
return lam
def __call__(self, x, target):
assert len(x) % 2 == 0, "Batch size should be even when using this"
if self.mode == "elem":
lam = self._mix_elem(x)
elif self.mode == "pair":
lam = self._mix_pair(x)
else:
lam = self._mix_batch(x)
target = mixup_target(
target,
self.num_classes,
lam,
self.label_smoothing,
label_size=self.label_size,
)
return x, target
class FastCollateTokenLabelMixup(TokenLabelMixup):
"""Fast Collate w/ Mixup/Cutmix with label that applies different params to each element or whole batch
Adapted from https://github.com/rwightman/pytorch-image-models/blob/master/timm/data/mixup.py
A Mixup impl that's performed while collating the batches.
"""
def _mix_elem_collate(self, output, batch, half=False):
batch_size = len(batch)
num_elem = batch_size // 2 if half else batch_size
assert len(output) == num_elem
lam_batch, use_cutmix = self._params_per_elem(num_elem)
for i in range(num_elem):
j = batch_size - i - 1
lam = lam_batch[i]
mixed = batch[i][0]
if lam != 1.0:
if use_cutmix[i]:
if not half:
mixed = mixed.copy()
(yl, yh, xl, xh), lam = cutmix_bbox_and_lam(
output.shape,
lam,
ratio_minmax=self.cutmix_minmax,
correct_lam=self.correct_lam,
)
mixed[:, yl:yh, xl:xh] = batch[j][0][:, yl:yh, xl:xh]
lam_batch[i] = lam
else:
mixed = mixed.astype(np.float32) * lam + batch[j][0].astype(
np.float32
) * (1 - lam)
np.rint(mixed, out=mixed)
output[i] += torch.from_numpy(mixed.astype(np.uint8))
if half:
lam_batch = np.concatenate((lam_batch, np.ones(num_elem)))
return torch.tensor(lam_batch).unsqueeze(1)
def _mix_pair_collate(self, output, batch):
batch_size = len(batch)
lam_batch, use_cutmix = self._params_per_elem(batch_size // 2)
for i in range(batch_size // 2):
j = batch_size - i - 1
lam = lam_batch[i]
mixed_i = batch[i][0]
mixed_j = batch[j][0]
assert 0 <= lam <= 1.0
if lam < 1.0:
if use_cutmix[i]:
(yl, yh, xl, xh), lam = cutmix_bbox_and_lam(
output.shape,
lam,
ratio_minmax=self.cutmix_minmax,
correct_lam=self.correct_lam,
)
patch_i = mixed_i[:, yl:yh, xl:xh].copy()
mixed_i[:, yl:yh, xl:xh] = mixed_j[:, yl:yh, xl:xh]
mixed_j[:, yl:yh, xl:xh] = patch_i
lam_batch[i] = lam
else:
mixed_temp = mixed_i.astype(np.float32) * lam + mixed_j.astype(
np.float32
) * (1 - lam)
mixed_j = mixed_j.astype(np.float32) * lam + mixed_i.astype(
np.float32
) * (1 - lam)
mixed_i = mixed_temp
np.rint(mixed_j, out=mixed_j)
np.rint(mixed_i, out=mixed_i)
output[i] += torch.from_numpy(mixed_i.astype(np.uint8))
output[j] += torch.from_numpy(mixed_j.astype(np.uint8))
lam_batch = np.concatenate((lam_batch, lam_batch[::-1]))
return torch.tensor(lam_batch).unsqueeze(1)
def _mix_batch_collate(self, output, batch):
batch_size = len(batch)
lam, use_cutmix = self._params_per_batch()
if use_cutmix:
(yl, yh, xl, xh), lam = cutmix_bbox_and_lam(
output.shape,
lam,
ratio_minmax=self.cutmix_minmax,
correct_lam=self.correct_lam,
)
for i in range(batch_size):
j = batch_size - i - 1
mixed = batch[i][0]
if lam != 1.0:
if use_cutmix:
mixed = (
mixed.copy()
) # don't want to modify the original while iterating
mixed[:, yl:yh, xl:xh] = batch[j][0][:, yl:yh, xl:xh]
else:
mixed = mixed.astype(np.float32) * lam + batch[j][0].astype(
np.float32
) * (1 - lam)
np.rint(mixed, out=mixed)
output[i] += torch.from_numpy(mixed.astype(np.uint8))
return lam
def __call__(self, batch, _=None):
batch_size = len(batch)
assert batch_size % 2 == 0, "Batch size should be even when using this"
half = "half" in self.mode
if half:
batch_size //= 2
output = torch.zeros((batch_size, *batch[0][0].shape), dtype=torch.uint8)
if self.mode == "elem" or self.mode == "half":
lam = self._mix_elem_collate(output, batch, half=half)
elif self.mode == "pair":
lam = self._mix_pair_collate(output, batch)
else:
lam = self._mix_batch_collate(output, batch)
if type(batch[0][1]) == type(0):
target = torch.tensor([b[1] for b in batch], dtype=torch.int64)
else:
target = torch.stack([b[1] for b in batch], 0)
target = mixup_target(
target,
self.num_classes,
lam,
self.label_smoothing,
device="cpu",
label_size=self.label_size,
)
target = target[:batch_size]
return output, target