-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_bert_only_full_data.py
157 lines (115 loc) · 3.86 KB
/
train_bert_only_full_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import torch
import os
import argparse
import logging
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print(device)
import datetime
import gc
date_time = str(datetime.date.today()) + "_" + ":".join(str(datetime.datetime.now()).split()[1].split(":")[:2])
parser = argparse.ArgumentParser()
parser.add_argument(
"--dataset",
type = str,
help = "select dataset / task",
default = "sst",
# choices = ["WS", "SST", "IMDB", "Yelp", "AmazDigiMu", "AmazPantry", "AmazInstr", "factcheck","factcheck_ood2","factcheck_ood1"]
)
parser.add_argument(
"--data_dir",
type = str,
help = "directory of saved processed data",
default = "datasets/"
)
parser.add_argument(
"--model_dir",
type = str,
help = "directory to save models",
default = "full_text_models/"
)
parser.add_argument(
"--seed",
type = int,
help = "random seed for experiment"
)
parser.add_argument(
'--evaluate_models',
help='test predictive performance in and out of domain',
action='store_true'
)
parser.add_argument(
"--inherently_faithful",
type = str,
help = "select dataset / task",
default = None,
choices = [None, "kuma", "rl", "full_lstm"]
)
parser.add_argument(
'--use_tasc',
help='for using the component by GChrys and Aletras 2021',
action='store_true'
)
user_args = vars(parser.parse_args())
user_args["importance_metric"] = None
log_dir = "experiment_logs/train_" + user_args["dataset"] + "_seed-" + str(user_args["seed"]) + "_" + date_time + "/"
config_dir = "experiment_config/train_" + user_args["dataset"] + "_seed-" + str(user_args["seed"]) + "_" + date_time + "/"
os.makedirs(log_dir, exist_ok = True)
os.makedirs(config_dir, exist_ok = True)
import config.cfg
config.cfg.config_directory = config_dir
logging.basicConfig(
filename= log_dir + "/out.log",
format='%(asctime)s %(levelname)-8s %(message)s',
level=logging.INFO,
datefmt='%Y-%m-%d %H:%M:%S'
)
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
logging.info("Running on cuda : {}".format(torch.cuda.is_available()))
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
from src.common_code.initialiser import initial_preparations
import datetime
# creating unique config from user args and model_config.json file
args = initial_preparations(
user_args,
stage = "train"
)
logging.info("config : \n ----------------------")
[logging.info(k + " : " + str(v)) for k,v in args.items()]
logging.info("\n ----------------------")
if args["inherently_faithful"] is not None:
from src.data_functions.dataholders import KUMA_RL_HOLDER as dataholder
else:
from src.data_functions.dataholders import BERT_HOLDER as dataholder
from src.tRpipeline import train_and_save, test_predictive_performance, keep_best_model_
# training the models and evaluating their predictive performance
# on the full text length
data = dataholder(
path = args["data_dir"],
b_size = args["batch_size"]
)
## evaluating finetuned models
if args["evaluate_models"]:
## in domain evaluation
test_stats = test_predictive_performance(
test_data_loader = data.test_loader,
for_rationale = False,
output_dims = data.nu_of_labels,
save_output_probs = True,
vocab_size = data.vocab_size
)
del data
gc.collect()
## shows which model performed best on dev F1 (in-domain)
## if keep_models = False then will remove the rest of the models to save space
keep_best_model_(keep_models = False)
else:
train_and_save(
train_data_loader = data.train_loader,
dev_data_loader = data.dev_loader,
for_rationale = False,
output_dims = data.nu_of_labels,
vocab_size = data.vocab_size
)