-
Notifications
You must be signed in to change notification settings - Fork 0
/
FRESH_extract_rationales.py
209 lines (162 loc) · 4.81 KB
/
FRESH_extract_rationales.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import torch
import argparse
import logging
import gc
torch.cuda.empty_cache()
# torch.cuda.memory_summary(device=None, abbreviated=False)
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
import datetime
import os
date_time = str(datetime.date.today()) + "_" + ":".join(str(datetime.datetime.now()).split()[1].split(":")[:2])
parser = argparse.ArgumentParser()
parser.add_argument(
"--dataset",
type = str,
help = "select dataset / task",
default = "sst",
# choices = ["WS", "SST","IMDB", "Yelp", "AmazDigiMu", "AmazPantry", "AmazInstr", "fc1", "fc2", "fc3"]
)
parser.add_argument(
"--data_dir",
type = str,
help = "directory of saved processed data",
default = "datasets/"
)
parser.add_argument(
"--model_dir",
type = str,
help = "directory to save models",
default = "models/"
)
parser.add_argument(
"--extracted_rationale_dir",
type = str,
help = "directory to save extracted_rationales",
default = "extracted_rationales/"
)
parser.add_argument(
"--thresholder",
type = str,
help = "thresholder for extracting rationales",
default = "topk",
choices = ["contigious", "topk"]
)
parser.add_argument(
'--use_tasc',
help='for using the component by GChrys and Aletras 2021',
action='store_true'
)
parser.add_argument(
"--inherently_faithful",
type = str,
help = "select dataset / task",
default = None,
choices = [None]
)
user_args = vars(parser.parse_args())
log_dir = "experiment_logs/extract_" + user_args["dataset"] + "_" + date_time + "/"
config_dir = "experiment_config/extract_" + user_args["dataset"] + "_" + date_time + "/"
os.makedirs(log_dir, exist_ok = True)
os.makedirs(config_dir, exist_ok = True)
import config.cfg
config.cfg.config_directory = config_dir
logging.basicConfig(
filename= log_dir + "/out.log",
format='%(asctime)s %(levelname)-8s %(message)s',
level=logging.INFO,
datefmt='%Y-%m-%d %H:%M:%S'
)
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
logging.info("Running on cuda ? {}".format(torch.cuda.is_available()))
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
from src.common_code.initialiser import initial_preparations
# creating unique config from stage_config.json file and model_config.json file
args = initial_preparations(user_args, stage = "extract")
print(args)
print('DONE initial preparations for args')
from src.evaluation import evaluation_pipeline
import datetime
logging.info("config : \n ----------------------")
[logging.info(k + " : " + str(v)) for k,v in args.items()]
logging.info("\n ----------------------")
from src.data_functions.dataholders import BERT_HOLDER as dataholder
data = dataholder(
args["data_dir"],
b_size = 8, # b_size = args["batch_size"], #stage = "eval",
return_as_frames = True
)
evaluator = evaluation_pipeline.evaluate(
model_path = args["model_dir"],
output_dims = data.nu_of_labels
)
logging.info("*********extracting in-domain rationales")
evaluator.register_importance_(data, data_split='test')
evaluator.create_rationales_(data)
del data
del evaluator
gc.collect()
torch.cuda.empty_cache()
## ood evaluation DATASET 1
data = dataholder(
path = args["data_dir"],
b_size=8, # b_size = args["batch_size"],
ood = True,
ood_dataset_ = 1,
return_as_frames = True
)
# data = dataholder(
# path = args["data_dir"],
# b_size = args["batch_size"],
# ood = True,
# ood_dataset_ = 1,
# stage = "eval",
# return_as_frames = True
# )
evaluator = evaluation_pipeline.evaluate(
model_path = args["model_dir"],
output_dims = data.nu_of_labels,
ood = True,
ood_dataset_ = 1
)
logging.info("*********extracting oo-domain rationales")
evaluator.register_importance_(data)
evaluator.create_rationales_(data)
# delete full data not needed anymore
del data
del evaluator
gc.collect()
torch.cuda.empty_cache()
## ood evaluation DATASET 2
data = dataholder(
path = args["data_dir"],
b_size=8, # b_size = args["batch_size"],
ood = True,
ood_dataset_ = 2,
return_as_frames = True
)
# data = dataholder(
# path = args["data_dir"],
# # b_size = args["batch_size"],
# b_size=16,
# ood = True,
# ood_dataset_ = 2,
# stage = "eval",
# return_as_frames = True
# )
evaluator = evaluation_pipeline.evaluate(
model_path = args["model_dir"],
output_dims = data.nu_of_labels,
ood = True,
ood_dataset_ = 2
)
logging.info("*********extracting oo-domain rationales")
evaluator.register_importance_(data) # register importance scores ()
evaluator.create_rationales_(data) # create json for training fresh ()
# delete full data not needed anymore
del data
del evaluator
gc.collect()
torch.cuda.empty_cache()