-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluation.cpp
236 lines (191 loc) · 7.45 KB
/
evaluation.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
#include "evaluation.h"
#include <iostream>
#include <algorithm>
#include <fstream>
namespace casimiro {
Evaluation::Evaluation(std::string _connectionString,
LongVectorPtr _userIds,
ptime _startTraining,
ptime _endTraining,
ptime _startEvaluation,
ptime _endEvaluation,
EvaluationType _evaluationType,
bool _social):
m_stringConnection(_connectionString),
m_userIds(_userIds),
m_startTraining(_startTraining),
m_endTraining(_endTraining),
m_startEvaluation(_startEvaluation),
m_endEvaluation(_endEvaluation),
m_evaluationType(_evaluationType),
m_social(_social)
{
}
Evaluation::~Evaluation()
{
}
LongVectorPtr Evaluation::rankCandidates(TweetProfileVectorPtr _candidates,
UserProfilePtr _userProfile,
ptime _until)
{
std::map<double, std::vector<long>> aux;
auto end = aux.end();
ptime from = _until - minutes(60*24*1);
double sim;
for (auto candidate : *_candidates)
{
ptime candidateTime = candidate->getPublishDateTime();
if(candidateTime < from)
continue;
if(candidateTime > _until)
break;
sim = _userProfile->cosineSimilarity(candidate->getProfile());
if(aux.find(sim) == end)
aux[sim] = std::vector<long>();
aux[sim].push_back(candidate->getTweetId());
}
LongVector rankedCandidates;
for (auto it = aux.rbegin(); it != aux.crend(); it++)
for (auto tweetId : it->second)
rankedCandidates.push_back(tweetId);
LongVector first50(&rankedCandidates[0], &rankedCandidates[std::min(50, (int)rankedCandidates.size())]);
return std::make_shared<LongVector>(first50);
}
LongVectorPtr Evaluation::rankCandidatesByDate(TweetProfileVectorPtr _candidates, ptime _until)
{
LongVector rankedCandidates;
ptime from = _until - minutes(60*24*1);
for (auto candidate : *_candidates)
{
ptime candidateTime = candidate->getPublishDateTime();
if(candidateTime < from)
continue;
if(candidateTime > _until)
break;
rankedCandidates.push_back(candidate->getTweetId());
}
std::reverse(rankedCandidates.begin(), rankedCandidates.end());
LongVector first50(&rankedCandidates[0], &rankedCandidates[50]);
return std::make_shared<LongVector>(first50);
}
LongVectorPtr Evaluation::rankCandidatesRandomly(TweetProfileVectorPtr _candidates, ptime _until)
{
LongVector rankedCandidates;
ptime from = _until - minutes(60*24*1);
for (auto candidate : *_candidates)
{
ptime candidateTime = candidate->getPublishDateTime();
if(candidateTime < from)
continue;
if(candidateTime > _until)
break;
rankedCandidates.push_back(candidate->getTweetId());
}
std::random_shuffle(rankedCandidates.begin(), rankedCandidates.end());
LongVector first50(&rankedCandidates[0], &rankedCandidates[50]);
return std::make_shared<LongVector>(first50);
}
UserProfilePtr Evaluation::getUserProfile(long int _userId, PqConnectionPtr _con)
{
switch(m_evaluationType)
{
case HASHTAG_EVAL:
return UserProfile::getHashtagProfile(_con, _userId, m_startTraining, m_endTraining, m_social);
case BOW_EVAL:
return UserProfile::getBagOfWordsProfile(_con, _userId, m_startTraining, m_endTraining, m_social);
case TOPIC_EVAL:
return UserProfile::getTopicsProfile(_con, _userId, m_startTraining, m_endTraining, m_social);
case RECENCY_EVAL:
case RANDOM_EVAL:
// Just return the simplest profile
//return UserProfile::getBagOfWordsProfile(_con, _userId, m_startTraining, m_endTraining, m_social);
return UserProfile::getTopicsProfile(_con, _userId, m_startTraining, m_endTraining, m_social);
default:
return nullptr;
}
}
EvaluationResults Evaluation::run()
{
std::cout << "Start running" << std::endl;
EvaluationResults results;
double meanMrr = 0;
double sAt5 = 0;
double sAt10 = 0;
double userMeanMrr;
double usersAt5;
double usersAt10;
double usersEvaluated = 0;
for (auto userId : *m_userIds)
{
auto con = std::make_shared<pqxx::connection>(m_stringConnection);
try
{
auto userProfile = getUserProfile(userId, con);
auto retweets = userProfile->getRetweets(m_startEvaluation, m_endEvaluation);
if(retweets->size() == 0)
{
std::cout << userId << "," << -1 << "," << -1 << "," << -1 << std::endl;
continue;
}
if(m_evaluationType != RECENCY_EVAL && m_evaluationType != RANDOM_EVAL)
userProfile->loadProfile();
ptime startCandidates = retweets->at(0).first - minutes(60*24*1);
ptime endCandidates = retweets->at(retweets->size()-1).first;
auto candidateTweets = userProfile->getCandidateTweets(startCandidates, endCandidates);
userMeanMrr = 0.0;
usersAt5 = 0.0;
usersAt10 = 0.0;
for (auto retweet : *retweets)
{
LongVectorPtr ranked = nullptr;
switch(m_evaluationType)
{
case HASHTAG_EVAL:
case TOPIC_EVAL:
case BOW_EVAL:
ranked = rankCandidates(candidateTweets, userProfile, retweet.first);
break;
case RECENCY_EVAL:
ranked = rankCandidatesByDate(candidateTweets, retweet.first);
break;
case RANDOM_EVAL:
ranked = rankCandidatesRandomly(candidateTweets, retweet.first);
break;
}
auto found = std::find(ranked->begin(), ranked->end(), retweet.second);
double index = (double) std::distance(ranked->begin(), found);
if(index < ranked->size())
{
userMeanMrr += 1.0 / (index + 1.0);
if(index < 10)
usersAt10 += 1;
if(index < 5)
usersAt5 += 1;
}
}
userMeanMrr = userMeanMrr / (double)retweets->size();
usersAt5 = usersAt5 / (double)retweets->size();
usersAt10 = usersAt10 / (double)retweets->size();
std::cout << userId << "," << userMeanMrr << "," << usersAt5 << "," << usersAt10 << std::endl;
results.setUserResult(userId, Result(userMeanMrr, usersAt5, usersAt10));
meanMrr += userMeanMrr;
sAt5 += usersAt5;
sAt10 += usersAt10;
usersEvaluated++;
}
catch(...)
{
std::cout << userId << "," << -2 << "," << -2 << "," << -2 << std::endl;
continue;
}
}
meanMrr = meanMrr / usersEvaluated;
sAt5 = sAt5 / usersEvaluated;
sAt10 = sAt10 / usersEvaluated;
results.setGeneralResult(Result(meanMrr, sAt5, sAt10));
std::cout << "General Mean MRR: " << meanMrr << std::endl;
std::cout << "General Mean sAt5: " << sAt5 << std::endl;
std::cout << "General Mean sAt10: " << sAt10 << std::endl;
return results;
}
}