forked from facebookresearch/FiD
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_retriever.py
230 lines (202 loc) · 8.35 KB
/
train_retriever.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import time
import sys
import torch
import transformers
from pathlib import Path
import numpy as np
import torch.distributed as dist
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader, RandomSampler, DistributedSampler, SequentialSampler
import src.slurm
import src.util
import src.evaluation
import src.data
import src.model
from src.options import Options
def train(model, optimizer, scheduler, global_step,
train_dataset, dev_dataset, opt, collator, best_eval_loss):
if opt.is_main:
try:
tb_logger = torch.utils.tensorboard.SummaryWriter(Path(opt.checkpoint_dir)/opt.name)
except:
tb_logger = None
logger.warning('Tensorboard is not available.')
train_sampler = DistributedSampler(train_dataset) if opt.is_distributed else RandomSampler(train_dataset)
train_dataloader = DataLoader(
train_dataset,
sampler=train_sampler,
batch_size=opt.per_gpu_batch_size,
drop_last=True,
num_workers=10,
collate_fn=collator
)
loss, curr_loss = 0.0, 0.0
epoch = 1
model.train()
while global_step < opt.total_steps:
if opt.is_distributed > 1:
train_sampler.set_epoch(epoch)
epoch += 1
for i, batch in enumerate(train_dataloader):
global_step += 1
(idx, question_ids, question_mask, passage_ids, passage_mask, gold_score) = batch
_, _, _, train_loss = model(
question_ids=question_ids.cuda(),
question_mask=question_mask.cuda(),
passage_ids=passage_ids.cuda(),
passage_mask=passage_mask.cuda(),
gold_score=gold_score.cuda(),
)
train_loss.backward()
if global_step % opt.accumulation_steps == 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), opt.clip)
optimizer.step()
scheduler.step()
model.zero_grad()
train_loss = src.util.average_main(train_loss, opt)
curr_loss += train_loss.item()
if global_step % opt.eval_freq == 0:
eval_loss, inversions, avg_topk, idx_topk = evaluate(model, dev_dataset, collator, opt)
if eval_loss < best_eval_loss:
best_eval_loss = eval_loss
if opt.is_main:
src.util.save(model, optimizer, scheduler, global_step, best_eval_loss, opt, dir_path, 'best_dev')
model.train()
if opt.is_main:
log = f"{global_step} / {opt.total_steps}"
log += f" -- train: {curr_loss/opt.eval_freq:.6f}"
log += f", eval: {eval_loss:.6f}"
log += f", inv: {inversions:.1f}"
log += f", lr: {scheduler.get_last_lr()[0]:.6f}"
for k in avg_topk:
log += f" | avg top{k}: {100*avg_topk[k]:.1f}"
for k in idx_topk:
log += f" | idx top{k}: {idx_topk[k]:.1f}"
logger.info(log)
if tb_logger is not None:
tb_logger.add_scalar("Evaluation", eval_loss, global_step)
tb_logger.add_scalar("Training", curr_loss / (opt.eval_freq), global_step)
curr_loss = 0
if opt.is_main and global_step % opt.save_freq == 0:
src.util.save(model, optimizer, scheduler, global_step, best_eval_loss, opt, dir_path, f"step-{global_step}")
if global_step > opt.total_steps:
break
def evaluate(model, dataset, collator, opt):
sampler = SequentialSampler(dataset)
dataloader = DataLoader(
dataset,
sampler=sampler,
batch_size=opt.per_gpu_batch_size,
drop_last=False,
num_workers=10,
collate_fn=collator
)
model.eval()
if hasattr(model, "module"):
model = model.module
total = 0
eval_loss = []
avg_topk = {k:[] for k in [1, 2, 5] if k <= opt.n_context}
idx_topk = {k:[] for k in [1, 2, 5] if k <= opt.n_context}
inversions = []
with torch.no_grad():
for i, batch in enumerate(dataloader):
(idx, question_ids, question_mask, context_ids, context_mask, gold_score) = batch
_, _, scores, loss = model(
question_ids=question_ids.cuda(),
question_mask=question_mask.cuda(),
passage_ids=context_ids.cuda(),
passage_mask=context_mask.cuda(),
gold_score=gold_score.cuda(),
)
src.evaluation.eval_batch(scores, inversions, avg_topk, idx_topk)
total += question_ids.size(0)
inversions = src.util.weighted_average(np.mean(inversions), total, opt)[0]
for k in avg_topk:
avg_topk[k] = src.util.weighted_average(np.mean(avg_topk[k]), total, opt)[0]
idx_topk[k] = src.util.weighted_average(np.mean(idx_topk[k]), total, opt)[0]
return loss, inversions, avg_topk, idx_topk
if __name__ == "__main__":
options = Options()
options.add_retriever_options()
options.add_optim_options()
opt = options.parse()
torch.manual_seed(opt.seed)
src.slurm.init_distributed_mode(opt)
src.slurm.init_signal_handler()
dir_path = Path(opt.checkpoint_dir)/opt.name
directory_exists = dir_path.exists()
if opt.is_distributed:
torch.distributed.barrier()
dir_path.mkdir(parents=True, exist_ok=True)
if not directory_exists and opt.is_main:
options.print_options(opt)
logger = src.util.init_logger(opt.is_main, opt.is_distributed, Path(opt.checkpoint_dir) / opt.name / 'run.log')
opt.train_batch_size = opt.per_gpu_batch_size * max(1, opt.world_size)
#Load data
tokenizer = transformers.BertTokenizerFast.from_pretrained('bert-base-uncased')
collator_function = src.data.RetrieverCollator(
tokenizer,
passage_maxlength=opt.passage_maxlength,
question_maxlength=opt.question_maxlength
)
train_examples = src.data.load_data(opt.train_data)
train_dataset = src.data.Dataset(train_examples, opt.n_context)
eval_examples = src.data.load_data(
opt.eval_data,
global_rank=opt.global_rank,
world_size=opt.world_size,
)
eval_dataset = src.data.Dataset(eval_examples, opt.n_context)
global_step = 0
best_eval_loss = np.inf
config = src.model.RetrieverConfig(
indexing_dimension=opt.indexing_dimension,
apply_question_mask=not opt.no_question_mask,
apply_passage_mask=not opt.no_passage_mask,
extract_cls=opt.extract_cls,
projection=not opt.no_projection,
)
model_class = src.model.Retriever
if not directory_exists and opt.model_path == "none":
model = model_class(config, initialize_wBERT=True)
src.util.set_dropout(model, opt.dropout)
model = model.to(opt.device)
optimizer, scheduler = src.util.set_optim(opt, model)
elif opt.model_path == "none":
load_path = dir_path / 'checkpoint' / 'latest'
model, optimizer, scheduler, opt_checkpoint, global_step, best_eval_loss = \
src.util.load(model_class, load_path, opt, reset_params=False)
logger.info(f"Model loaded from {dir_path}")
else:
model, optimizer, scheduler, opt_checkpoint, global_step, best_eval_loss = \
src.util.load(model_class, opt.model_path, opt, reset_params=True)
logger.info(f"Model loaded from {opt.model_path}")
model.proj = torch.nn.Linear(768, 256)
model.norm = torch.nn.LayerNorm(256)
model.config.indexing_dimension = 256
model = model.to(opt.device)
optimizer, scheduler = src.util.set_optim(opt, model)
if opt.is_distributed:
model = torch.nn.parallel.DistributedDataParallel(
model,
device_ids=[opt.local_rank],
output_device=opt.local_rank,
find_unused_parameters=True,
)
train(
model,
optimizer,
scheduler,
global_step,
train_dataset,
eval_dataset,
opt,
collator_function,
best_eval_loss
)