diff --git a/episodes/intro-sce.Rmd b/episodes/intro-sce.Rmd index 612404b..5370dc4 100644 --- a/episodes/intro-sce.Rmd +++ b/episodes/intro-sce.Rmd @@ -132,7 +132,9 @@ There are two main disadvantages to this "from-scratch" approach: :::: -Let's look at an example dataset. `WTChimeraData` comes from a study on mouse development. We can assign one sample to a `SingleCellExperiment` object named `sce` like so: +Let's look at an example dataset. `WTChimeraData` comes from a study on mouse development [Pijuan-Sala et al.](https://www.nature.com/articles/s41586-019-0933-9). The study profiles the effect of a transcription factor TAL1 and its influence on mouse development. Because mutations in this gene can cause severe developmental issues, Tal1-/- cells (positive for tdTomato, a fluorescent protein) were injected into wild-type blastocysts (tdTomato-), forming chimeric embryos. + +We can assign one sample to a `SingleCellExperiment` object named `sce` like so: ```{r, message = FALSE, warning=FALSE} sce <- WTChimeraData(samples = 5) @@ -308,4 +310,7 @@ combined_sce :::::::::::::::::::::::::::::::::::::::::::::::: +## References + +1. Pijuan-Sala B, Griffiths JA, Guibentif C et al. (2019). A single-cell molecular map of mouse gastrulation and early organogenesis. Nature 566, 7745:490-495. diff --git a/episodes/large_data.Rmd b/episodes/large_data.Rmd index d803b5a..4db4a26 100644 --- a/episodes/large_data.Rmd +++ b/episodes/large_data.Rmd @@ -646,5 +646,3 @@ system.time({i.out <- runPCA(sce.brain, - Converter functions between existing single-cell data formats enable analysis workflows that leverage complementary functionality from poplular single-cell analysis ecosystems. :::::::::::::::::::::::::::::::::::::::::::::::: - -## References