diff --git a/_config.yml b/_config.yml index 47fdf2d..f8bb61e 100644 --- a/_config.yml +++ b/_config.yml @@ -6,8 +6,8 @@ # swc: Software Carpentry # dc: Data Carpentry # lc: Library Carpentry -# cp: Carpentries (to use for instructor traning for instance) -carpentry: "dc" +# cp: Carpentries (to use for instructor training for instance) +carpentry: "incubator" # Overall title for pages. title: "Introduction to MRI and BIDS" @@ -28,33 +28,27 @@ kind: "lesson" # Please don't change it: / is correct. repository: / -# Email address, no mailto: -email: "team@carpentries.org" - # Sites. amy_site: "https://amy.software-carpentry.org/workshops" carpentries_github: "https://github.com/carpentries" carpentries_pages: "https://carpentries.github.io" carpentries_site: "https://carpentries.org/" dc_site: "http://datacarpentry.org" -example_repo: "https://github.com/carpentries/lesson-example" -example_site: "https://carpentries.github.io/lesson-example" -lc_site: "https://librarycarpentry.org/" +example_repo: "https://github.com/swcarpentry/lesson-example" +example_site: "https://swcarpentry.github.com/lesson-example" +lc_site: "https://librarycarpentry.github.io/" swc_github: "https://github.com/swcarpentry" swc_pages: "https://swcarpentry.github.io" swc_site: "https://software-carpentry.org" -template_repo: "https://github.com/carpentries/styles" -training_site: "https://carpentries.github.io/instructor-training" -workshop_repo: "https://github.com/carpentries/workshop-template" -workshop_site: "https://carpentries.github.io/workshop-template" -cc_by_human: "https://creativecommons.org/licenses/by/4.0/" +template_repo: "https://github.com/swcarpentry/styles" +training_site: "https://swcarpentry.github.io/instructor-training" +workshop_repo: "https://github.com/swcarpentry/workshop-template" +workshop_site: "https://swcarpentry.github.io/workshop-template" # Surveys. -pre_survey: "https://carpentries.typeform.com/to/wi32rS?slug=" -post_survey: "https://carpentries.typeform.com/to/UgVdRQ?slug=" -instructor_pre_survey: "https://www.surveymonkey.com/r/instructor_training_pre_survey?workshop_id=" -instructor_post_survey: "https://www.surveymonkey.com/r/instructor_training_post_survey?workshop_id=" - +pre_survey: "https://www.surveymonkey.com/r/swc_pre_workshop_v1?workshop_id=" +post_survey: "https://www.surveymonkey.com/r/swc_post_workshop_v1?workshop_id=" +training_post_survey: "https://www.surveymonkey.com/r/post-instructor-training" # Start time in minutes (0 to be clock-independent, 540 to show a start at 09:00 am). start_time: 0 @@ -94,3 +88,6 @@ exclude: # Turn on built-in syntax highlighting. highlighter: rouge + +# Remote theme +remote_theme: carpentries/carpentries-theme diff --git a/code/01-neuroimaging-fundamentals/01-neuroimaging-fundamentals.ipynb b/code/01-neuroimaging-fundamentals/01-neuroimaging-fundamentals.ipynb index 9deac5d..57776d1 100644 --- a/code/01-neuroimaging-fundamentals/01-neuroimaging-fundamentals.ipynb +++ b/code/01-neuroimaging-fundamentals/01-neuroimaging-fundamentals.ipynb @@ -23,9 +23,9 @@ "\n", "Imagine taking a slice \n", "\n", - " \n", + " \n", "\n", - "\n", + "\n", "\n", "- 3D image of anatomy\n", "- a 3D **pixel** is called a **voxel**\n", @@ -33,7 +33,7 @@ "\n", "### Functional (fMRI)\n", "\n", - "\n", + "\n", "\n", "- tracks the blood oxygen level dependant (BOLD) signal\n", "- 4D (x, y, z + time)\n", @@ -42,7 +42,7 @@ "\n", "### Diffusion (DWI)\n", "\n", - "\n", + "\n", "\n", "- measures diffusion of water in order to model tissue microstructure\n", "- 4D (x, y, z + direction of diffusion)\n", @@ -109,4 +109,4 @@ }, "nbformat": 4, "nbformat_minor": 4 -} +} \ No newline at end of file diff --git a/code/02-anatomy-of-nifti/02-anatomy-of-nifti.ipynb b/code/02-anatomy-of-nifti/02-anatomy-of-nifti.ipynb index 78798ea..131346d 100644 --- a/code/02-anatomy-of-nifti/02-anatomy-of-nifti.ipynb +++ b/code/02-anatomy-of-nifti/02-anatomy-of-nifti.ipynb @@ -466,7 +466,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.4" + "version": "3.7.7" } }, "nbformat": 4, diff --git a/code/02-anatomy-of-nifti/solutions/02-anatomy-of-nifti_solutions.ipynb b/code/02-anatomy-of-nifti/solutions/02-anatomy-of-nifti_solutions.ipynb index 406d552..d88aa3f 100644 --- a/code/02-anatomy-of-nifti/solutions/02-anatomy-of-nifti_solutions.ipynb +++ b/code/02-anatomy-of-nifti/solutions/02-anatomy-of-nifti_solutions.ipynb @@ -32,7 +32,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -48,11 +48,11 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ - "t1_img = nib.load('someones_anatomy.nii.gz')" + "t1_img = nib.load(\"../../../data/someones_anatomy.nii.gz\")" ] }, { @@ -72,58 +72,15 @@ }, { "cell_type": "code", - "execution_count": 3, - "metadata": {}, + "execution_count": 8, + "metadata": { + "tags": [] + }, "outputs": [ { - "name": "stdout", "output_type": "stream", - "text": [ - " object, endian='<'\n", - "sizeof_hdr : 348\n", - "data_type : b''\n", - "db_name : b''\n", - "extents : 0\n", - "session_error : 0\n", - "regular : b''\n", - "dim_info : 0\n", - "dim : [ 3 57 67 56 1 1 1 1]\n", - "intent_p1 : 0.0\n", - "intent_p2 : 0.0\n", - "intent_p3 : 0.0\n", - "intent_code : none\n", - "datatype : uint8\n", - "bitpix : 8\n", - "slice_start : 0\n", - "pixdim : [1. 2.75 2.75 2.75 1. 1. 1. 1. ]\n", - "vox_offset : 0.0\n", - "scl_slope : nan\n", - "scl_inter : nan\n", - "slice_end : 0\n", - "slice_code : unknown\n", - "xyzt_units : 2\n", - "cal_max : 0.0\n", - "cal_min : 0.0\n", - "slice_duration : 0.0\n", - "toffset : 0.0\n", - "glmax : 0\n", - "glmin : 0\n", - "descrip : b''\n", - "aux_file : b''\n", - "qform_code : mni\n", - "sform_code : mni\n", - "quatern_b : 0.0\n", - "quatern_c : 0.0\n", - "quatern_d : 0.0\n", - "qoffset_x : -78.0\n", - "qoffset_y : -91.0\n", - "qoffset_z : -91.0\n", - "srow_x : [ 2.75 0. 0. -78. ]\n", - "srow_y : [ 0. 2.75 0. -91. ]\n", - "srow_z : [ 0. 0. 2.75 -91. ]\n", - "intent_name : b''\n", - "magic : b'n+1'\n" - ] + "name": "stdout", + "text": " object, endian='<'\nsizeof_hdr : 348\ndata_type : b''\ndb_name : b''\nextents : 0\nsession_error : 0\nregular : b''\ndim_info : 0\ndim : [ 3 57 67 56 1 1 1 1]\nintent_p1 : 0.0\nintent_p2 : 0.0\nintent_p3 : 0.0\nintent_code : none\ndatatype : uint8\nbitpix : 8\nslice_start : 0\npixdim : [1. 2.75 2.75 2.75 1. 1. 1. 1. ]\nvox_offset : 0.0\nscl_slope : nan\nscl_inter : nan\nslice_end : 0\nslice_code : unknown\nxyzt_units : 2\ncal_max : 0.0\ncal_min : 0.0\nslice_duration : 0.0\ntoffset : 0.0\nglmax : 0\nglmin : 0\ndescrip : b''\naux_file : b''\nqform_code : mni\nsform_code : mni\nquatern_b : 0.0\nquatern_c : 0.0\nquatern_d : 0.0\nqoffset_x : -78.0\nqoffset_y : -91.0\nqoffset_z : -91.0\nsrow_x : [ 2.75 0. 0. -78. ]\nsrow_y : [ 0. 2.75 0. -91. ]\nsrow_z : [ 0. 0. 2.75 -91. ]\nintent_name : b''\nmagic : b'n+1'\n" } ], "source": [ @@ -141,60 +98,16 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 9, "metadata": {}, "outputs": [ { + "output_type": "execute_result", "data": { - "text/plain": [ - "['sizeof_hdr',\n", - " 'data_type',\n", - " 'db_name',\n", - " 'extents',\n", - " 'session_error',\n", - " 'regular',\n", - " 'dim_info',\n", - " 'dim',\n", - " 'intent_p1',\n", - " 'intent_p2',\n", - " 'intent_p3',\n", - " 'intent_code',\n", - " 'datatype',\n", - " 'bitpix',\n", - " 'slice_start',\n", - " 'pixdim',\n", - " 'vox_offset',\n", - " 'scl_slope',\n", - " 'scl_inter',\n", - " 'slice_end',\n", - " 'slice_code',\n", - " 'xyzt_units',\n", - " 'cal_max',\n", - " 'cal_min',\n", - " 'slice_duration',\n", - " 'toffset',\n", - " 'glmax',\n", - " 'glmin',\n", - " 'descrip',\n", - " 'aux_file',\n", - " 'qform_code',\n", - " 'sform_code',\n", - " 'quatern_b',\n", - " 'quatern_c',\n", - " 'quatern_d',\n", - " 'qoffset_x',\n", - " 'qoffset_y',\n", - " 'qoffset_z',\n", - " 'srow_x',\n", - " 'srow_y',\n", - " 'srow_z',\n", - " 'intent_name',\n", - " 'magic']" - ] + "text/plain": "['sizeof_hdr',\n 'data_type',\n 'db_name',\n 'extents',\n 'session_error',\n 'regular',\n 'dim_info',\n 'dim',\n 'intent_p1',\n 'intent_p2',\n 'intent_p3',\n 'intent_code',\n 'datatype',\n 'bitpix',\n 'slice_start',\n 'pixdim',\n 'vox_offset',\n 'scl_slope',\n 'scl_inter',\n 'slice_end',\n 'slice_code',\n 'xyzt_units',\n 'cal_max',\n 'cal_min',\n 'slice_duration',\n 'toffset',\n 'glmax',\n 'glmin',\n 'descrip',\n 'aux_file',\n 'qform_code',\n 'sform_code',\n 'quatern_b',\n 'quatern_c',\n 'quatern_d',\n 'qoffset_x',\n 'qoffset_y',\n 'qoffset_z',\n 'srow_x',\n 'srow_y',\n 'srow_z',\n 'intent_name',\n 'magic']" }, - "execution_count": 4, "metadata": {}, - "output_type": "execute_result" + "execution_count": 9 } ], "source": [ @@ -233,18 +146,16 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 10, "metadata": {}, "outputs": [ { + "output_type": "execute_result", "data": { - "text/plain": [ - "array([1. , 2.75, 2.75, 2.75, 1. , 1. , 1. , 1. ], dtype=float32)" - ] + "text/plain": "array([1. , 2.75, 2.75, 2.75, 1. , 1. , 1. , 1. ], dtype=float32)" }, - "execution_count": 5, "metadata": {}, - "output_type": "execute_result" + "execution_count": 10 } ], "source": [ @@ -261,102 +172,16 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 11, "metadata": {}, "outputs": [ { + "output_type": "execute_result", "data": { - "text/plain": [ - "array([[[ 8.79311806, 8.79311806, 8.79311806, ..., 7.73574093,\n", - " 7.73574093, 7.38328189],\n", - " [ 8.79311806, 9.1455771 , 8.79311806, ..., 8.08819997,\n", - " 8.08819997, 8.08819997],\n", - " [ 9.1455771 , 8.79311806, 8.79311806, ..., 8.44065902,\n", - " 8.44065902, 8.44065902],\n", - " ...,\n", - " [ 8.08819997, 8.44065902, 8.08819997, ..., 7.38328189,\n", - " 7.38328189, 7.38328189],\n", - " [ 8.08819997, 8.08819997, 8.08819997, ..., 7.73574093,\n", - " 7.38328189, 7.38328189],\n", - " [ 8.08819997, 8.08819997, 8.08819997, ..., 7.38328189,\n", - " 7.38328189, 7.03082284]],\n", - "\n", - " [[ 8.79311806, 9.1455771 , 8.79311806, ..., 7.73574093,\n", - " 7.38328189, 7.38328189],\n", - " [ 8.79311806, 9.1455771 , 9.1455771 , ..., 8.08819997,\n", - " 7.73574093, 8.08819997],\n", - " [ 8.79311806, 9.49803615, 9.1455771 , ..., 8.44065902,\n", - " 8.44065902, 8.44065902],\n", - " ...,\n", - " [ 8.08819997, 8.08819997, 8.08819997, ..., 7.38328189,\n", - " 7.38328189, 7.03082284],\n", - " [ 8.08819997, 8.08819997, 8.08819997, ..., 7.38328189,\n", - " 7.38328189, 7.38328189],\n", - " [ 8.08819997, 8.08819997, 8.08819997, ..., 7.38328189,\n", - " 7.38328189, 7.73574093]],\n", - "\n", - " [[ 9.1455771 , 9.1455771 , 8.79311806, ..., 7.73574093,\n", - " 7.38328189, 7.03082284],\n", - " [ 9.1455771 , 9.49803615, 9.1455771 , ..., 8.08819997,\n", - " 7.73574093, 7.38328189],\n", - " [ 9.1455771 , 9.49803615, 9.1455771 , ..., 8.08819997,\n", - " 8.08819997, 8.08819997],\n", - " ...,\n", - " [ 8.08819997, 8.44065902, 8.44065902, ..., 7.73574093,\n", - " 7.38328189, 7.38328189],\n", - " [ 8.44065902, 8.08819997, 8.44065902, ..., 7.38328189,\n", - " 7.38328189, 7.38328189],\n", - " [ 8.08819997, 8.08819997, 8.08819997, ..., 7.38328189,\n", - " 7.38328189, 7.38328189]],\n", - "\n", - " ...,\n", - "\n", - " [[ 9.49803615, 9.85049519, 9.85049519, ..., 7.38328189,\n", - " 7.38328189, 7.03082284],\n", - " [ 9.85049519, 9.85049519, 9.85049519, ..., 7.38328189,\n", - " 7.38328189, 7.73574093],\n", - " [ 9.85049519, 9.85049519, 10.20295423, ..., 8.08819997,\n", - " 8.08819997, 8.08819997],\n", - " ...,\n", - " [ 9.49803615, 9.1455771 , 9.49803615, ..., 7.73574093,\n", - " 7.73574093, 7.73574093],\n", - " [ 9.49803615, 9.49803615, 9.1455771 , ..., 7.73574093,\n", - " 8.08819997, 7.73574093],\n", - " [ 9.49803615, 9.1455771 , 8.79311806, ..., 8.08819997,\n", - " 7.73574093, 7.73574093]],\n", - "\n", - " [[ 9.49803615, 9.85049519, 10.20295423, ..., 7.38328189,\n", - " 7.38328189, 7.03082284],\n", - " [ 9.1455771 , 9.85049519, 9.1455771 , ..., 7.73574093,\n", - " 7.38328189, 7.38328189],\n", - " [ 9.85049519, 9.85049519, 9.49803615, ..., 8.08819997,\n", - " 7.73574093, 8.08819997],\n", - " ...,\n", - " [ 9.49803615, 8.79311806, 9.1455771 , ..., 8.08819997,\n", - " 7.38328189, 7.73574093],\n", - " [ 9.1455771 , 9.1455771 , 9.1455771 , ..., 7.73574093,\n", - " 8.08819997, 7.73574093],\n", - " [ 8.79311806, 9.1455771 , 9.1455771 , ..., 7.73574093,\n", - " 7.73574093, 7.38328189]],\n", - "\n", - " [[ 9.1455771 , 8.79311806, 8.79311806, ..., 7.03082284,\n", - " 7.03082284, 6.6783638 ],\n", - " [ 9.49803615, 9.85049519, 9.49803615, ..., 7.73574093,\n", - " 7.73574093, 7.73574093],\n", - " [ 9.49803615, 9.49803615, 9.85049519, ..., 7.73574093,\n", - " 8.08819997, 7.73574093],\n", - " ...,\n", - " [ 8.79311806, 9.1455771 , 9.1455771 , ..., 8.08819997,\n", - " 8.08819997, 8.08819997],\n", - " [ 9.1455771 , 9.1455771 , 9.1455771 , ..., 8.08819997,\n", - " 8.08819997, 7.73574093],\n", - " [ 8.79311806, 9.1455771 , 9.1455771 , ..., 8.08819997,\n", - " 7.73574093, 7.73574093]]])" - ] + "text/plain": "array([[[ 8.79311806, 8.79311806, 8.79311806, ..., 7.73574093,\n 7.73574093, 7.38328189],\n [ 8.79311806, 9.1455771 , 8.79311806, ..., 8.08819997,\n 8.08819997, 8.08819997],\n [ 9.1455771 , 8.79311806, 8.79311806, ..., 8.44065902,\n 8.44065902, 8.44065902],\n ...,\n [ 8.08819997, 8.44065902, 8.08819997, ..., 7.38328189,\n 7.38328189, 7.38328189],\n [ 8.08819997, 8.08819997, 8.08819997, ..., 7.73574093,\n 7.38328189, 7.38328189],\n [ 8.08819997, 8.08819997, 8.08819997, ..., 7.38328189,\n 7.38328189, 7.03082284]],\n\n [[ 8.79311806, 9.1455771 , 8.79311806, ..., 7.73574093,\n 7.38328189, 7.38328189],\n [ 8.79311806, 9.1455771 , 9.1455771 , ..., 8.08819997,\n 7.73574093, 8.08819997],\n [ 8.79311806, 9.49803615, 9.1455771 , ..., 8.44065902,\n 8.44065902, 8.44065902],\n ...,\n [ 8.08819997, 8.08819997, 8.08819997, ..., 7.38328189,\n 7.38328189, 7.03082284],\n [ 8.08819997, 8.08819997, 8.08819997, ..., 7.38328189,\n 7.38328189, 7.38328189],\n [ 8.08819997, 8.08819997, 8.08819997, ..., 7.38328189,\n 7.38328189, 7.73574093]],\n\n [[ 9.1455771 , 9.1455771 , 8.79311806, ..., 7.73574093,\n 7.38328189, 7.03082284],\n [ 9.1455771 , 9.49803615, 9.1455771 , ..., 8.08819997,\n 7.73574093, 7.38328189],\n [ 9.1455771 , 9.49803615, 9.1455771 , ..., 8.08819997,\n 8.08819997, 8.08819997],\n ...,\n [ 8.08819997, 8.44065902, 8.44065902, ..., 7.73574093,\n 7.38328189, 7.38328189],\n [ 8.44065902, 8.08819997, 8.44065902, ..., 7.38328189,\n 7.38328189, 7.38328189],\n [ 8.08819997, 8.08819997, 8.08819997, ..., 7.38328189,\n 7.38328189, 7.38328189]],\n\n ...,\n\n [[ 9.49803615, 9.85049519, 9.85049519, ..., 7.38328189,\n 7.38328189, 7.03082284],\n [ 9.85049519, 9.85049519, 9.85049519, ..., 7.38328189,\n 7.38328189, 7.73574093],\n [ 9.85049519, 9.85049519, 10.20295423, ..., 8.08819997,\n 8.08819997, 8.08819997],\n ...,\n [ 9.49803615, 9.1455771 , 9.49803615, ..., 7.73574093,\n 7.73574093, 7.73574093],\n [ 9.49803615, 9.49803615, 9.1455771 , ..., 7.73574093,\n 8.08819997, 7.73574093],\n [ 9.49803615, 9.1455771 , 8.79311806, ..., 8.08819997,\n 7.73574093, 7.73574093]],\n\n [[ 9.49803615, 9.85049519, 10.20295423, ..., 7.38328189,\n 7.38328189, 7.03082284],\n [ 9.1455771 , 9.85049519, 9.1455771 , ..., 7.73574093,\n 7.38328189, 7.38328189],\n [ 9.85049519, 9.85049519, 9.49803615, ..., 8.08819997,\n 7.73574093, 8.08819997],\n ...,\n [ 9.49803615, 8.79311806, 9.1455771 , ..., 8.08819997,\n 7.38328189, 7.73574093],\n [ 9.1455771 , 9.1455771 , 9.1455771 , ..., 7.73574093,\n 8.08819997, 7.73574093],\n [ 8.79311806, 9.1455771 , 9.1455771 , ..., 7.73574093,\n 7.73574093, 7.38328189]],\n\n [[ 9.1455771 , 8.79311806, 8.79311806, ..., 7.03082284,\n 7.03082284, 6.6783638 ],\n [ 9.49803615, 9.85049519, 9.49803615, ..., 7.73574093,\n 7.73574093, 7.73574093],\n [ 9.49803615, 9.49803615, 9.85049519, ..., 7.73574093,\n 8.08819997, 7.73574093],\n ...,\n [ 8.79311806, 9.1455771 , 9.1455771 , ..., 8.08819997,\n 8.08819997, 8.08819997],\n [ 9.1455771 , 9.1455771 , 9.1455771 , ..., 8.08819997,\n 8.08819997, 7.73574093],\n [ 8.79311806, 9.1455771 , 9.1455771 , ..., 8.08819997,\n 7.73574093, 7.73574093]]])" }, - "execution_count": 6, "metadata": {}, - "output_type": "execute_result" + "execution_count": 11 } ], "source": [ @@ -373,18 +198,16 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 12, "metadata": {}, "outputs": [ { + "output_type": "execute_result", "data": { - "text/plain": [ - "numpy.ndarray" - ] + "text/plain": "numpy.ndarray" }, - "execution_count": 7, "metadata": {}, - "output_type": "execute_result" + "execution_count": 12 } ], "source": [ @@ -407,18 +230,16 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 13, "metadata": {}, "outputs": [ { + "output_type": "execute_result", "data": { - "text/plain": [ - "3" - ] + "text/plain": "3" }, - "execution_count": 8, "metadata": {}, - "output_type": "execute_result" + "execution_count": 13 } ], "source": [ @@ -440,18 +261,16 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 14, "metadata": {}, "outputs": [ { + "output_type": "execute_result", "data": { - "text/plain": [ - "(57, 67, 56)" - ] + "text/plain": "(57, 67, 56)" }, - "execution_count": 9, "metadata": {}, - "output_type": "execute_result" + "execution_count": 14 } ], "source": [ @@ -477,18 +296,16 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 15, "metadata": {}, "outputs": [ { + "output_type": "execute_result", "data": { - "text/plain": [ - "dtype('float64')" - ] + "text/plain": "dtype('float64')" }, - "execution_count": 10, "metadata": {}, - "output_type": "execute_result" + "execution_count": 15 } ], "source": [ @@ -505,16 +322,15 @@ }, { "cell_type": "code", - "execution_count": 11, - "metadata": {}, + "execution_count": 16, + "metadata": { + "tags": [] + }, "outputs": [ { - "name": "stdout", "output_type": "stream", - "text": [ - "6.678363800048828\n", - "96.55541983246803\n" - ] + "name": "stdout", + "text": "6.678363800048828\n96.55541983246803\n" } ], "source": [ @@ -551,18 +367,16 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 17, "metadata": {}, "outputs": [ { + "output_type": "execute_result", "data": { - "text/plain": [ - "32.40787395834923" - ] + "text/plain": "32.40787395834923" }, - "execution_count": 12, "metadata": {}, - "output_type": "execute_result" + "execution_count": 17 } ], "source": [ @@ -600,7 +414,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 18, "metadata": {}, "outputs": [], "source": [ @@ -623,7 +437,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 19, "metadata": {}, "outputs": [], "source": [ @@ -639,7 +453,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 20, "metadata": {}, "outputs": [], "source": [ @@ -664,20 +478,19 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 22, "metadata": {}, "outputs": [ { + "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAACTCAYAAACXvkKnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOy9a3Bc13Um+u1+v9BoAA2AIAGS4FumJIp6WZFiW3LsWFZccW7KsZOZ+Do3yfWtVGUqU0kqrx+pSU0mlZvKnRn/mMpcxb4pT5VTju34IcWy9bAsPyRZlkSLkihSpEjxARBvNIBGN7obDZz7o/GtXnufBkmJIABKZ1Wx0Ow+Z5999mOtb6+n8TwPAQUUUEABXX8U2ugOBBRQQAEF9PYoYOABBRRQQNcpBQw8oIACCug6pYCBBxRQQAFdpxQw8IACCiig65QCBh5QQAEFdJ1SZKM7EFBAAW1OMsasuY+xMWbV7/Rv7nehUAihUANvxuNxAEAsFgMAhMNhLC8vAwCWlpYAAMlkEgAQjUZRr9cBAOVyWdpyidfUajX5P9ukq7V2uXbdry/3G9+Dv+l3vUJX7knP87rdLwMGHlBAAb1l0gzJZbaXYtLhcNh3TTQaBdBkrJFIBJFIxLo+mUyira0NALBz504AwMDAAACgs7MT8/PzAIBisQgAeM973gMA6Ovrw8zMDADg+eefBwBpp16vSz8mJiYAACMjI/J/trm4uCjXu4JCM3kKAf5Gxry8vHxJBs7rL3PNObSggIEHFFBAlyWXubjf69/0d2TE/E6jZn4m4+b/jTFIJBIAgFQqBQBob2/Hli1bAACZTAYAkMvlAADValWYLP+yL7VaTfrANknLy8vCgHt6eqzfkskk5ubmADSFQrlc9jFpIvalpSXrtKD7ok8IrcaR17vXXAkFDDyggAK6YnJRtkbgZEQaSRNBkzlr9QeZMxkXr0kmkz4mncvlhAHzt4WFBQDA5OSkoGoyRj5XE583Pj4uzyHiJppn26lUSp5NJD4/Py/PrFQqAGCpZ8iw+RsFx9LSkk+waOTuCr7VhGUrCoyYAQUUUEDXKQUIPKCAAlqVLnecN8YI2nX/ptNpQaEa2QINdEpETfTM/ycSCflMVK6vLxQKAJr6amOMIHuqNrQe2kXl1WpV2mZbRNL5fF5+Y7/4d2lpSQyhpVLJaqtUKok6hddQ9VKtVgW58zn8q/vXylh6ufEPEHhAAQUU0HVKAQIPKKB3GBljcgA+D+BGAB6A3wbwOoB/AbATwFkAn/Q8r3Clbbp6Wuq5jTHiReKi7ba2NqTTaQBN5E29ciqVkt9c5B6LxeQzn1upVHDy5EkATY8RPm/btm1yHZHt7OwsAKCjo8OHfqmPBpoeMKOjowCa6L6jowN9fX0AmicDY4zPIMpxKJVKgsapA2cf5ubm5LupqSmr74uLi9IvlzQ6X40CBB5QQO88+hyA73qedwDAIQDHAfwZgO95nrcXwPdW/h/QdU4BAg8ooHcQGWPaAbwfwG8BgOd5NQA1Y8zHAdy7ctkXATwF4E8v1x69TFbzNIlGo6Kn7ujoANDwywYaaJv6YxeJZ7NZX1vUY1erVdEx02OkUChgenoaQNN1b/v27QAa3iRE0iR6eZTLZUG/RN48IejPvIY+40DzRNDb2wuggbr5PgwU4n2dnZ2i++az2db8/LwgeyJ3vku5XPb5jeu/l9OBBww8oKumtxuxp93NuHm5wHUkHa/jwtY+uNxA3NTcPE7/5LPbRivfZZexaLpUlB03fCKRkPfhX31kJiPhkZt/9WZ2owDfAh0GMAHgn4wxhwC8COAPAPR6njeycs0ogN4rbVAzcP7VqgQy7h07dgAAurq6ADRUKJxPXk8GTkaoiaqO+fl5MQDSF7tUKomqQatvgMYa4XhxvDnGCwsLMqa8n8KkWq3KOmObvGZhYUHWFudHCwo+O5vNAmjMvWskJePP5/MiKDg2HIexsTFLTaSJ/b4UBQw8oDWhUCjUMmTYvQZoLl4u5htuuAE333wzAODgwYPWb8lkUtDY8ePHAQBHjx4FAAwNDcmG48bSekNuJH1Ne3s7gObGczcw0Nz8OoCDvsAkPiMej8uzeV+tVhMmwffi3z179oiwGRoaAgCcPn0aAHDq1CkcOXIEQFMnS1SnA0VIZFoc+5X/RwDcCuA/eJ73nDHmc3DUJZ7neasJXWPMZwF8ttVvAW0+Chh4QGtGoVDIh4A10yEaIzK54YYbAAC333479u/fDwDCYIlmRkdH8dxzzwFoMm6NtrQRic8jc+ZzyEx1hB8FBA1Vut9EgnRTK5VKoiagMCBDn5iYEGMVr8lkMnId+3727FkAwB133IHDhw8DaIaEayTJ93nhhResPlSrVcv1TN/nCMshAEOe5z238v+vocHAx4wxfZ7njRhj+gCMowV5nvcggAdX2vfYH86Hq+7I5XIyj1RpUKB1dXWJqoAInJTL5QRhUtWg3899t0qlIoKPbVHAtre3yzPZL6JZfR/bpKCNRqPSBvvA30KhkKwpvkMqlRLwwb98biKRsFC17kMoFJJAIYIK7U5JooGT/aVgvhQFRsyAAnoHked5owAuGGP2r3z1CwBeA/AQgM+sfPcZAN/agO4FtMYUIPCA1oxaISf+TSaT6O5uJFPbu3cvAOCuu+4C0FArEBET/Z45cwYA8Oijjwo6orqDz5iZmZHAC7apTwF0Wbv11lsBNNQmw8PDAIBXXnlFvuP9fPaJEyes+3/5l3951TDnY8eO4c033wQAXLhwAUDj1ECkyhMF3+Hxxx8XhHb33XcDAAYHB6Vt3kcURkQ4MTHh09vrcXfoPwD4kjEmBuAMgP8DDbD2FWPM7wA4B+CT7k2tyPM8hMNhH/Lmex08eFDGnt9x3IaHhwWFUgfM+zOZjLybG/hSqVRkjCYnJwHYOnCOg0425bod6rB23se+6DwpbhZC3jczM+M7DY6MjMh1bGPr1q0AGmuTbfGUR3fHdDotOn93jOLxuJUBEWgicaC1TUdTwMADCugdRp7nvQTg9hY//cJ69yWga0sBAw9oTcgY0zIEmDq+jo4O7N69G0BDDww0dabZbFbQL1N+/uhHPwLQQChEK0Ro1DV/4AMfQH9/P4CmTrFUKuHYsWMAmmhn27Zt0heiIyL3J554AkDDK0JnjwOAX/zFXwTQQFdEjkSL1H329/fj3LlGpk+ise7ubkFfROXsSygUEv02DZV8DpE4AF92vZdeeklc6qhHdelteKxclkKhkBUuzxML527nzp2iyyfKJHrWNgf2me0UCgVZI0TSfL/p6Wk5KdELpVKpCBrl2BPVV6tVK5MhYCNwF13ra/gd1ynXYa1W8yWnApqnQL4P267VatJXnhr4nKWlJUHXXK/8LZFIyHM4Dmx7fn7+snO6rgz8ahLEr8YgANvta7WcwvpzKBRqmZdYk5ugnYtneXnZyg/MiVleXrbyMOijT6scBxtNnuddec7KgN61ZIxBLBbzGX/pLXTTTTeJGyGJDJzMEPDnvB4dHRWme/HiRQAQVdTk5KT4TWvfajftKhmdMcb33aUiHbWroMvwuUd1dkG937VhEmiCibm5OTF6ss9arUNGz+8ISnTaWhpLtQF2UzFwoHWaR5eJais7P7seDppRcxDT6bRI5Y6ODsnxm8vlrOACnRw+Go1azFzrx0jVatWSikQK4+PjstDm5uZkImZmZiy9FheA69fpOuq38iq4Emd+Ta6ga0WX06u9XdL95JjqJPzalQ5oMgNjDL73ve8BaCJwzle9Xhf9MZE0vTjS6bS0yXmv1WrCUF588UUAzQ2YTqcFQbKv9957L4CGhwuR02/8xm9YbcbjcdFLuptsaGgIP/dzPweg6fUyMTEhfaaunX2JRCKyeelh8vDDDwMA7r//fuzatcsaU73u+Jl90Trxt7JGAnrn0IaqUFYrK3Q5RhYKheQYlUwm5Xja0dEhwQR9fX3iItbR0SGbmihdu0VpgaGPPVri62AAMpJSqSQuZGNjY5bhhYx9enpaJDOZeSt0rlGEy9RbBZusRq3yC7vjdy2Jz6DKgXOwb98+QW0uYvu3f/s3UStQtaH9rlld5b777gPQVFWkUilhskRcs7Oz4rJF5sm5q1QqggrJbMkUR0ZGpF+8nu9QKBTEqEq3QKpstAskqb29XdQ9PDJzjT7zzDOC0Hgcp1D41re+hfvvvx8AhJFT2JVKJREKbka8KxHaV0sUxFTzsH89PT0ibKk24rsbY2RMNbjh/4mEuW8o0GZmZnwBWjSmAvAZLHW+bR0ABjTWkRt8w/t19CbnXCNx17ioETjb4J7NZDLSH74z19j09LRcx3XKZ+dyOZ8KhQJ6YWHBigxtRZtCB74ac3G/00lzuIHy+bxs2MHBQSsajAMZj8ctlG2MsY5FGhnrcF69KbR6RAeDaH9i7RvMY+HY2JhMyMTEBObm5iyGslrYbKsNuVqgzJWogQKEFlBA7zzaFAw8oHcOuTo+upjdfPPNIvhIjzzyCIBG0ApdDCkEqRbr7e0V5E7hTAOadm+jgEomkyKcieZ19RSiKaJGCrlIJOLLi0FBWywWBYETURNMbN++XVR1RH/hcFjQKO/jKeLcuXOCnGngJLotl8t47LHHAAAPPPAAgOZpY8+ePXKqI8JlcNC1VImFw2Ekk0kpZ0bkTSTe3d0t+vGnn34aQBM1b926VU5gpPPnzwMAXnvtNUHeHCuidK1/bvVubkBTOBxuGfgDNBA159ENSlpcXJT7XD15q1NypVKR63lq4jodGBjAgQMHAMCn1jt58iROnToFAHjjjTcAAO9973ulLzzRE/Tx/+Pj43JiXM1wvaEMvFUl59WMldFo1EpXqRf2vn37ADQWDBFxJpORTba8vGyFVReLRUvFwcmo1+uWzp0RfG1tbVYuA43eddFVneeBC3dubk426oULFzA5OSk69FKpJBO0uLjoK7fEcdE+yFeiTgnQdkABvTtowxj4avpZl3lrYyUNUP39/cK0d+3aJcgsn89buXvZ5sWLFyWX8IULFzA2NiaMM5FIWDoxzUR13mAdkEIh0dvbK0iuvb3dYv7sq3aD27FjB4aHh8Xt7MKFCxaq0lb71Rj1akVkV/u8nhQKhWT8qdbSwpUC+JlnngEA/PSnPwXQQHFUM1EwE63Pzc359IAabROx87v29nZBuET11K0CECRJVRnv4zzymWyf1xJlE0lTyG7fvl36SrfAoaEhQYA0jOpMegQGbOu1116TvhOVfv/73wfQCCICGqiM78Xn0P4yNTW1ak7pqyFWuslkMgJIqO/nePT09ODVV18F0NTN89psNisIlXtAG5Fd90GOqa7+fqm13MqpQbfB+3gicF0N6/W6BaD085aWlmS96u/cYCqukX379uG2224DYKthOUbsD9cD1+QNN9wgz+HphoCvt7dX5nw1ClQoAQUUUEtisYZMJiMCmYyb9qXFxUVRgRDY6LStZE4UwmSi+/fvFwHEvxRy2rjYKj8KmTSfUyqV5ITM67XNy2Xu/H+1WpX+uQIjHA63FB7sG4EAmfYtt9wigplCQfuU8zedHpfXEDxQdUIBqHO8rEYbxsAvZbjUSJYvkEqlRP944MABsc7v3r1bFpN2CTx79ixeeuklAI0sdpRksVgM6XRaUJOWtJVKRT6Xy2VBkxrdVCoVK3scF2RbW5ugx507d8pi1v7ofDaR4Y4dO0QnNjQ0JJOqq1+3Gjc9Vu5Yan9Z99prici5UfjePBURgYdCIcm+R5dBLuqxsTFBo/fccw+AJhoZHx/HQw89BKCp+9bWfu01RNLzAMBKqKSzHGoiatKfiaB27twpa4CeBZzDTCbjC6X/0Y9+JPdyzfLdt23bJvptMg2u03/913+V/nFdMKDp/vvvlw1OXavWHS8tLW2qOIOA1oc2hQrF/V6rTbjR+vv75fi2f/9+QQRbtmyRtorFIn784x8DaPgT66xjlJjGGCwsLIghaGlpqaUfOPXZQEPC8/parSabNxKJyLNnZ2dFDXDs2DHZiDpSLZPJoKuryxJKbOuNN94QQ8f4+LgcL4vF4mVzQ7v+162Qw3q4miUSCUEPjLrUR+ZvfvObAJoIiELq1ltvlTEi4yejTKVS+OQnG2k7vvOd7wBoGqh6enqEUdJg6XmeCAaiIx0YQeZMgxEpHA7LvFAoU+hv3bpVmKZbmGByclKMiY8//jgAG3m6gviBBx6QvpKYze/DH/6wvCNBCQ2DO3fuxE033QSgKRRpIB0bG0OtVltzYyaNmPl8XgQRETgNr6dOnRJ0TSHKa8LhsKxp17i9Y8cO3HnnnQDgUw1Vq1VpS8eNuEZITVSTkF9w72ezWV++E/1+7nf6N5fi8bjsawIMrrEtW7bI/ud78P+xWExABfcD1U0jIyOylri2ONZdXV0t86ZrCrIRBhRQQAFdp7QpdOCuYY7oJR6PC3Let2+foLOBgQGRUqFQSIyCjzzyiKChWCwmuiVjjKCEcDiMbDYrSEDnefA8T5DgLbfcYmW9o57ujTfekACRiYkJkfgasS8vL4uRYmhoSLLbDQwMYM+ePdKvTCYjx/vDhw8Lcjl69KgcuSORiIX+W9HlCilc6vu1IKpncrmcz82MaqinnnpKkAlROtHwoUOHBKkSeRF55PN5QVMf+tCHAEByncRiMWmD6DOZTMp8ujmoJyYmZO7c583OzgoCInIiSkqlUjJnnGeO98LCgqhO3v/+98tziTx5kvrwhz8MoHGy4KmLxlL2c8eOHfjoRz8KAPjGN74h7wg0jJpUobgummfPnsXU1NSaq8jC4TA6OjrQ1dUlfea88Fnnz5+X+eFv7N/09LScEvgd12EmkxE0euONNwJoItdKpSL7rZXHlxuQo42LJB1QpgttAHbxDqJzzkErtaQ2xPJkyVMTEbnuM0935AGZTEb4GNuisXp6elr2A8eP/9+2bZuM32q0adwIdT4THmU7OjpE1719+3b5rH1LT5w4ITrSoaEhOZ5mMhlZENlsVo6duVwO8XhchEG5XJZCAeVyWRj4tm3brIRMND78/M//PD74wQ8CAL7+9a8LIxgaGrIS07Mf0WhUdNujo6M4ceKEbLwbb7xRGEO5XJZJzmazohc9deqULC5d3Vofl69UVRLoSAN6KxQKhZBMJtHX1yfgwmVAOmpS232ARqUh7htdfIH/J/OkECZznJubExsA944GWq6qyxhjBdoBTcHZ3t4u31FVQ1ChXZPZBx2hTXDGPTo4OCh7lwCSz6nX69I+bRMElu3t7fJuZNI6qRevp5DkOHZ3d1v1O1vRpkDgAV3fxKxz3d3dIoSow6VQ+973vieblwjld3/3dwE0BJbriUDddkdHh+jDuWGJbrds2SLP4W/5fL6ljpTPpWAkGiPqLhaLomOmfYWbu1ar+ZIxkbq6unDo0CHrt0KhIP1yqwNls1lhDDR+coz27t0rKJunNhrMz58/j9dffx0A8L73vQ9Ak+EdPXoUw8PDwiQDevfQpmDg2kMiHA7Lptq6dat4Hmzfvl2YQzQaFdT80EMPiQTr6OiQjT85OSkJ8++99175vlAo4NChQ1bxU0b6HT16FM8++yyAxsbUbTHpUTablSMZfWSBRmpTHrlPnTolvrFjY2Mi8dvb21EulyVh08mTJyUx08GDB+VkUSgUpNhBe3u7MB1t4NWJ6i8Xgq/H+XLXBBQQKRQKIZVKIZ/PC3Lk+iMCLxQKvlwj9HXWqkeqUHSWQDeKlqdioClYqZ4qFAqWdxpgI2l+plqK12rVi1tEWhc1dvsHNIUvT+UHDx6UPvI+bSDlMwlU2KdisSjqFO5xXjs5OSnX6xM40OBB/LwarTsDb5UGVuubwuGwHCV27dolR5U9e/aI/vH48eN49NFHATSQCY938/Pzolq4++67ccsttwCAFQrM4BveU61WZXBvvfVWuf873/mOJBa68847Ld9M6qW6u7vxS7/0S/IOfJ9bb71VwmlffPFFK8+xzkZXKBTw1FNPyXtQNaPd4w4ePCjvfeTIEUt/p0PEW42x60bYinEbY8IAXgAw7Hnex4wxgwC+DKALjYrmn/Y8r7XyfYVCoRDi8TgGBgYEvXKB/+QnPwHQ2FjcSHxPzonneb6K3ETU+v347nQ5DIfDMjZErrFYzOf3q6N5iVpJutoKhTHVX7pqChmK9hMGGqo69ofMZn5+XtYtkbuOCma/iLx5GtB+yfS8+aM/+iPpA8eSwl17dJw7d04AREDvHtoUCDygDaU/AHAcAEX9/w3gv3me92VjzP8E8DsA/uFSDTDtQFdXl6gKyOh42kgkEoLGqKrQRW1dFzFtVNIMDmgy95mZGYtxky7lTucaNslYe3p6fL+xzVgs5suERzLGyHU646WrDyUy5CkMaKqLOC5LS0ui/2S/PvCBDwBoCELqVPmXdp2+vj50dHSIzWetKBwOI5PJIJ1OC5rk6ZPvEw6H5f0551TlhMNhEWQEZa2inrVhE2jkEuE4cH6pNgNshwGgMW4cU+qkKdx0tlGuH30qoHDnSZ8G7GQyKa5/fId9+/ZZajX9l0FPQHMdsO/lctkXwUlAMD8/L+CFfSe4zOfz8h6r0boz8NV8lDmx7e3tVtIiejVkMhlZuE888YQYOTo6OmQxpVIp/N7v/R6Ahi81jx87duwQlcnMzIw12IlEQn6bmJgQ5jI9PW0ZEzjgExMT8uy7777b2rw0aIZCIUH/bW1tgpx6enowPT0tOuBkMin3vPzyy7J4PvShDwlSLJVKVs1EtzI70EDieoG0QtrLy8utwvL7AfwSgP8C4A9N44IPAvh3K5d8EcB/wmUYeEABBbQxtKEqFP0dGWo+nxfJ1dvbK9JvYWFBotJeffVVuV5X1fjt3/5tuXfr1q2CcEKhkEhFz/OQyWRE6mWzWflNlzBKpVLSbjabFUl77tw50ZN/5CMfsfJyEBkkk0l59p49eyTDXDqdxtatW0UYnDt3zsrzQRfIb3/726Jm2Lt3r6hv6vW6VdmDqpzl5WX5vlXRiNXGHcB/B/AnABgt0AVgxvM86mSGAGxrdaMmuptt2bJF1A9UJ1BYRSIRsSNQdULVUiQSEcHpBspQDws09a4U2DooSruUue+q51S3C8CqNMO5oEqNSDKXywkSck8YoVBIxpyAIZlMWsV4gabAjcViggApvPn/kZERuY6eD1SXPPLII/KuzOtD97udO3cim82uarx9u8STVUdHR0udL9AYPyJnghnurc7OTtGdc9w4v7oNXsNnxGIxAS1sM5lMWoZtoKmCOn36tHWac5/DMdXVfQB7Xvk8jqkumE1AybUCwJejpFwuW+UD9Vjp30i6CI2bv4X/j8fjcnJZja6Yga+FrjSgzUPGmI8BGPc870VjzL1v4/7PAvgsgMvmawjo+iTNwN20EmTayWRSmCWZlDba61QTACyXPjeRFJnpzMyMlZSOz9F2B6DpYlitVn3FJKiG0O6AZIwUrvF4XMCRTnfB+7ShkfdT6BBE6Fwt7jvyfcLhsK8IBYGE53miAXCTZ+kKY6vRW0HgV60rdYkdjUajYont7+8X3dP27dtlAp9//nnRp5bLZZHoQ0ND+Ou//msADYnPxVSv1wUFz8zMiBTdtm0bqtWq6Auj0ahM8MLCgqChnp4emUydlTASiYgb109+8hMJ3igWi1Z9PC6W06dPy+cbbrgBu3fvln4999xzMnmnTp0SVDg6Ooonn3wSQGPRsO87d+60MqNx8Zw5c8bSJ7byEW+hVrkHwC8bYx4AkEBjXj8HIGeMiayg8H4Aw+6NK+09COBBAMhms14+n0dXV5dsPLq8EfUsLCzgIx/5CABYcwTYQR1c2BzLaDQqm4xzpn189UYl8f1d3+B0Ou2r2MKAqaWlJUFvWpcNNJiPq8Mk6cpNJCaAAprjz2uWlpYEvXHuOWaxWEz6wO+4zvv6+mTdUIVHamtrQy6XW3MEHtDmpyti4GupK9VHT+15wk0zMDAgR+y+vj6Rss8++6wcodvb26Vq9Yc+9CErkonHnkKhIAt6ampKjuvd3d1YXFy0EqXrI7dOekUm8uabb8pm27t3r2yyxcVFScx0//33S7/Pnz8vUjsWi4lwooDRiIUSPRKJ4Pjx4wAaDI0S/qmnnhLVQyQSkaOe53nCHCuViiTK9zxPjpqXchf0PO/PAfw5AKwg8D/2PO/fG2O+CuATaJyuPgPgW6s2skL0rMnn8zKW9F8m48rn84IwXPfHWq0mnzl/HHsWFAAa3j1A0396165dlvES8KuQ2AbQUJNwvCkEtHCmIYtqO6ox2trapA/umOrkYdr7hQJJu77yvYjUuOY1gKBAYZ/JyO+44w5897vfBWBHLPL+7u5u3zH9aikcDqOtrQ2pVEr6z2dqdSGJz+c4ZLNZn4qL95fLZZ9xmnsyGo3KHuN+rFQqVh1boAkEQqGQzKduA2iMt6uacNeA7jv7mU6n5Tq2qY3EbJP9q9Vqshbd04pOe0w+wmsXFhbks2t8T6VSvqRrLl1pLhTqSvmEt6UrDei6oD9FQ0i/gcY8f2GD+xNQQAGtQpcV2WupK135PwDbb1pn5evu7rac3VlEVqsYKpWKoCNdIFcbJGdnZwUFFYtFkYCZTAb1el1QlkZwAwMDImWPHz8u6L9cLotqJRKJCEpsa2uTnAjxeFyel8/nrRS39GZ5+umn5blAQ+Ly//F4XNDj6dOnRX9Wr9elAEIikbCKylL662IQo6OjVgFm0qWKGnue9xSAp1Y+nwFwZ8sLVyGeoNLptCBUHvf5zLvuussK4mC/gYbBmciE86ojH93k+TQ0aeTuoiz9HdfN4uKizKMuNM3n8DqiN23odIvY6hwarnpFl/jifOmMkvyN2TV5WqlWq4Iq2T+O2e7du60K9UDTYNfd3Y3Ozs41R+ChUEhOH3x/rdoCGnOymnpJuwqSXHUknwM0kXgoFPKh5FKpJHyB17MvPT09ciJnm0TrsVhM+sB9yLnr7u6W73Q6YaDBY3jC5b5Op9NyHd9Zu1ByzXMNa1WejgPQf+PxuC9eQZfmc8sQunQlM75mulJjjMym3jBtbW3CwPv6+oSpjY2N4eWXXwbQUIlQrzg5OYnPfOYzAPw6SE5OoVCQBaEHPuz0QCYAACAASURBVJvNolAoyOSEQiG5rq2tTfTNlUpFFlt3d7cw9rm5OdG7Tk9P+5LUAI3kTFSBTE9Py2IcGBiwUs2Wy2Xx5d2zZ4+VapILsqurSzaz1plv3bpVIsQmJibkmnK5LO6IxphL+kQHFFBA1zddloGvpa40oHcm0VshkUiIsCI6pHC84447fFZ2Cr+uri75TAMd2+np6fGVQdMWfTdv9NLSkk9o6XzxDAihcOb9o6OjcrKivYQ2l/379wvA4EmHAjqfzwu60ojfRVV8jtb98n0YyTk0NGTlTwdsPbcbPMIT4uDgoM+NcC28xpjWIpVK+TwsWhF/47uHw2HfaUvHSrhBWxrdamM92yQw4emWfRocHBR3Va433jc3NyftE9kSQOk8O5w7/i0Wi74si57nyXfuWvY8T+7lO2ptA/vD+dQ58YnYXR06gDVB4KvRnwL4sjHmrwH8DG9RVxoKhWQQ2tvbrVB30smTJ8VgZUyzht4tt9wiyeBrtZrl36nRuM5FoI8zr7zyitxzww03WGHSzDa2bds2y/DCxVOtVmXDep4nPsOpVKql3/Dy8rL1rK985SuyAPfu3SvvvbS0ZBm3vvSlLwFoHB05iRMTE5IXpbOzUzb7/v37haHMzc35fI/dzwG9K2hNImyz2Syy2azsJTJZncfEVe2QWdVqNZ9nTCtjsCvkNDPkuqWKzn02/2p1LNDc+6FQSNpyhRBjQgC/Oqerq0tUIlq94qrZNOlq95p0sY1WxVlclRD7TiPypegtMfCr1ZW6OlhOZjabFbVEd3e3lRSK/p2JREIG9P3vf7+8dCaTkYCWzs5OYY79/f3yvO7ubkFQrEjPSdXlyxYXF4VZplIpK/iCKKlSqcizb7nlFkGMY2Njll6UzLW9vV0Ye7FYRDQaFd3nmTNn5HkayR0+fFi8Sh599FFZEIlEQrwUXn75Zdx+++0AGsKGiHd2dtbyj9V1AK8VE2cx47a2NumH6xWQzWZlk3BstK2DhX05x7xf561huTVSLBbzeTLU63XZHG69w3g8Lv0hEiJT0DYIN2VvJBKxPgPNTTY/P+9jDAsLC77Qc9LJkydF2FLI6xJ7DESjECay7O3tlWfzORyrWCyGRCKhGVoQYfsuoSAXSkBXTcwHEolEhIGTCeojNwUfGVerquouEx0aGhJkQkFIwa/zpOhcKmRkLvPs7OyU1Ay0aZDZa5c3HmmpUkmlUnLSchn53NycMFnmq9fXaVdJABgeHm6pMuBfF41RwCSTSZ9QINAxxiCdTuvT55pF2La1tSEej/vcAfm3VCr5CiZw7nRJRJJ2HXYFkgYbbuGMtrY2QcsU7hScY2Nj0hbHS8dwcJzZpi616BaH4P+7urqkLd0vFxToog8EEfyO87O4uOjbD9pQyev5fhxrHaOyGm0YAydqAxqDRb1Ue3u75Dw5efKktRg4eJlMRpBUR0eHTNbU1JTlZ8rNmsvlZHCmpqbQ3t4uxlFdy65SqQg63rt3rxWerusYcgF0dnaKyufhhx/GfffdB6CBArmZzp07J2j69ddfx1133SWBSjt27BA/cgYEAY2Jo3fL0NAQjhw5AqCBwrgojh07JuqXXbt2SZtbtmwRHW6pVGrpkRLQO5fW0muMgiygzUvrysC166AxRphqW1ubVQiVDGh4eNgyTumjJpm5Ts86MzMjRqp8Pi8SVAeRMJCGR9Xh4WExViUSCblncHBQ0OTRo0dFNbNv3z6R/PF43HJRIpPUer8LFy5YFTp2795tlXP7uZ/7OQCNXBf0gEmn04I2b7/9dkF/Fy9etMpxkbHn83lRS+zatUuu1wLtUsanqyVjjKA0XaEEaKKJTCYj6qJW6V5dHSbnS6eZdfO61Ot1X9CE53niwUP7CdseHBwUoe6GSeuiDewD5/zUqVOSp8ZFRDovOxneli1bBGCwf9q45kb4su1wOOwLCtLvxX5RRaYDUeLxOO9ZM6+xXbt2eTROu/3SIecEOlT7cGw1+uU1XA+RSMQXXq7dN/kdgUkkEhHwok9gvJ9Ait9xrJaXl+U52rWQv3HOXWSt+QpVVfo93D5wfvVnnZOc5F4fj8flvdxUxaFQ6JoaMQMKKKBNRmvpNRYKhSSVruthodUFOl0C0GRAuiK866+vBaH20wcaTJTgThsNKQx0kiigwZB1wjf9PGOMPEszTf6l0CGzbgV0tGBx0zNoLxR+bmVr0io3/V6RSETad+052WzWlzrX1+4lf11j0kEZkUhEOtfV1WVJTKpQaPQDGkiHHiLt7e2CbDo6OuTetrY2ka6lUsnShWon+71791qIglJeJ/VfXFwUZH7x4kVZBLqwcDgcFpWLtkpnMhnLysxJK5VKmJ+flzZ27Nghk3XfffeJtD137pwYKw8fPiy5V770pS8J6gqHwzJOZ86ckfS1XV1dsphHRkbk2deSjDGi4uImdovFhsNhKz8MYKMyfaLSv+XzeXkfzjPb1p4/OucIN7aLbM6ePevLdkimoQ2+2hgJNBCvm99bzwPXZSvDpta3Ao21wTZIejOT+bneHsVi0XIv0/0LhUK+fCwt6Kq8xgLanLRh6WQjkYgsSCZCAhpMjqlIK5WKVfqMxyR9NJuYmBC1wpYtW6yk7dy4J06ckO97enpw8803S/rS8fFx64jEI3uhULCqqWiDmGbIVMXs2bPHYu5aUpPJ0NOE6g7mJgcaHi18tlYv/exnPxNd94EDByRfSmdnpzCyl19+2dL3MxDqjTfesI6wgR783UVr4TUWi8WwtLQkdiKufe25RWHG33SJNaqVNCIGGvvCLXXGdrinAFhqSe4PF+m3t7fLbzq3EJ/jxg9wb2qgRUM0kbiOadBeRu77axdDF7SQZ9TrdTGaU/1FfqerUREk8BmRSOSy5Q8DFUpAV03M5x6NRle1thtj5FTBkw03bjKZlPu4YLW+kmXaSHojan0h26TumsZj0tzcnNQq5cmJzysUCnISc9OOzs/Pywan8OVJb8uWLb5ADB0B6/r9RiIRq5QcYB/7eQpjW9zwOisjdfw69Fx7MwT07qF1N2Jykek6g21tbbKY5+bmrMKk+ljL4sMnT56UTaDLPW3btk3aHx0dtVyDKAFvuukmDA0NSea5ZDIpiGF4eFjQ/IkTJ4QpzM7OChPRJ4QLFy6If/jNN99sGUf0ZmL/+vr6kE6nxWD7zDPPSFt33323hMbXajXLr5m+5lu3bpU0rbpwwejoqLRz4403WpFmRAi6rNNaE42Q+pRC9MK+vPHGG+LJ46aAjUQigj7YR/a7p6fHF53I+/SpQkfuuQERFAYzMzM+pMX1NT09LcyS6IoMfHJyUtYe+6BzqbAtIkidH8XNcqeL3/K9OB46bS0N6DyJFYtFETAcZy0srxXzZvShWwaOjgbFYlF+czMIdnR0yJiw762KInCta/UZ1w8F2vT0tKieOL8UaPPz8z7juVbJkp+wnzqboS6MDDTBRa1Wk7HXZdPYZ86n1sO7um+up8nJSem7e19bW5vMI8eUAERHpK5GG6YDZ709oNFhLuYLFy7IcQ1oDl53d7eoPTKZjAz05OSkbNCFhQVp56abbrKSwvNY9uabb1rpa3O5nNzf19eHV155BUBjAXDiR0ZGWgZmVCoVWTi1Wk0mSVvFe3t7pZ35+XlLX1mv14VJaJVPPB6XhXjfffeJ2uSFF16QvhaLRWEcCwsLOHHiBIBGEWRdPUYzAG0pDyiggK5/ClQoAa0Z6WAGEpHrrl27rJJjACx3Sl0qDrBzSrtuh7x/cXERf/zHfwwA+Mu//Eu5n20QoVH4ZrNZnzFSq0toXNUZI4GGoHbRPxHb0tKSCGFt26Baxa0s09fXJ6okolnt0eHm7dAuhzzBULhrBK6DUtaKiL5nZ2dlnFxVF+Av9Mwxmpubk888UWlXUjdGQZdB47hpgzLfj20QPA0PD8tn9pNBYrFYzKfW49yVSiU5GXC+2IfR0VHJJKnztXM+3JwrOlyez6M7r47ednOZa60EwSFVf+Vy+bJFOtZdhaIT2Oi8BXyJ+fl5GQitU92xY4eVI0DXSSQa1wO1a9cuQZ/hcFiOM7VaDefPn5ej/Xve8x7cfPPNAOzJjkajsgiOHDkim3p0dNRK/8nvT58+LcdznQZSp7p888030d/fLxMVDoctP2HNxKjiKZVKOHDgAADgtddeEzXLkSNHLN0pn62zJW7ZskUQ+/j4uM+IE1BAl6J6vY5CoYALFy74KrqTYXqe5xPIOieI637IfZvNZkVd6daq1KmgdTAdr2ebVIteuHDBSqDFfrEPrjpLe7a5sRvaMKozlrJfel8DTRXXzMyMqDFdX3EdYUvGzT7kcjnhORTofG6pVLps+ot1R+Ba76nLW3GCi8WilciGzG5gYMCS2JRuN910k7R58eJFYdSe50kFl2g0KoO7vLyMnTt3WmHMvP/QoUOWWxkNXh0dHSKh+/v7xW2sVCpJlXitt8vn8/IO2prtZurTeTvK5bIV/EK1y+zsrDDn/fv3ywZ48803rRwpnPSLFy+Kvr6zs9NK1nM5fdrVEAM63BJuVF2FQiGxW3ATcP4rlYqvKLOujELSRjsA+Kd/+idhGtQfFgoFn08viwDHYjHLJgA05+TXf/3XpWQfBS7nKR6Py7py3R37+/tFSHLOjh49ijvuuAMAfMmIdu3aJXNIIMD5LRaL8t58BzKyjo4OEd4cY27uQDX27qVAhRJQQAG1pGq1itOnT2NkZMTnTaMLBdOe5EYSLi4u+tAo1UC7d+8WUEQ0z0ybOmiHwikWi4k7LoEOhbbOEEoiqtXRqjpDIYlAkEBH5yNx1RednZ0iyNk/XbOU7bs1S+v1ugh8vj+vjUQi0kcicKr5LpcHBdgAI6b2A6c+KR6P+4IUeD0XhVazTExMiO5KG0B19ZuOjg6ZRB1JNjIygr6+PkGvr7zyiiCtdDqNQ4cOyfP4jFqtJmHZAwMDUoRhfHxc3uHxxx8XZF6tVmWidRa5ZDKJer1uhR7rcHIumDNnzsjiHB0dFXXKtm3bRGXz8ssvSz4XXfdPJ4bq6OgQJMdkU4A/ydNaED1v3DSgRNDlclkQaqskTu5G55xqXamrH//qV7+Kj370owCai//8+fOyIbj5dW5yImI+j149p06d8h3b3/ve90rfqTrQ7ws0TkhuqtWzZ8/KxuZpSIdXc83wdMJ1uri46PPMaBWg4yLvxcVFRCKRwI3wXUgb5kao8z4Ads4Lfq/dCKvVqizuc+fO4fDhwwAajEn75pLxzc7OyuedO3fK8XNhYQFTU1OistGlkEKhkPTjjjvukNwkvb29kq9icnJSjt/bt2+XTXvfffcJQ9UbaXR0VIJsarWaJXE9zxNdWkdHhxi3zp49KwJg7969wgRnZ2eFwfX19eFnP/uZjCWfOTs7KwyauZyBBmO8gmi9t00Mu3ZJq8nIGCkMyZCTyaSoVTTjJrkFE7Qun3NBg+XJkydlnRBN6VJcFGJMX0vvnVwuJwiPRGa/fft2X5ZFrct1mW0mk7HsHEBTaOqcHuwLE5dNT0/7gq24ViYmJkTVog2oQGNNXwv1WKVSwfHjxy0kSGHFsaVeWn/WgS/aVRhoCvRisSj7k+pN7sl8Pu8L2llaWpIxdMvNafBHfqGLKvA7HaoP2EjfLTpcr9ctYzmfw2dR8FPd1t3dLe9Goc39kEwmfeXSOHfz8/PyrvS+09W1Lrdn1x2B6886MY5m7K3yJBSLRWGi4+PjsqF0lFhHR4dsDl3EYWBgQBBRe3s7nn76abmnvb0du3fvBgDL3/XMmTOymbZv3y6oe/fu3ZYRULvy0ePi4sWLePLJJwE0IizZZiaTwfLysmzE4eFheXYkEhFjrOd5YrjcunWrZWEns0ilUpb1moyiXq/LNblczpdeM6CAAnrnUKADD2hNyPM81Go1Ky83AF+uEsDvdVCpVEQQuuhU5wchEmJbjz/+uK848QMPPOBTofD+aDQqpxz61hP93nPPPXJC+MY3vmFdc9ddd0nxDD5bF6l1y39FIhE5Ubgh5OFwWE5dLtpOpVLiQkZhzr6nUilfljt9Ur0WboTVahVnzpxBIpEQUEV9t1aRESS43k3JZFLmk+oznizn5uZELcW557iUy2WZa23wdwOYdKEOfsc2+VefTHQSK6AxfnwfzgVP421tbb7o23Q6Le/D65n99MiRIz43R32fG+KvvUu01wnQnPu5ubnNFcjjks7exRfTngJaNTA+Pi7X7N+/X45dAwMDwiRmZ2dF7ZHNZuXesbEx63h77733yhG6Xq9LIv5jx46JUaNcLkv/JiYmRAUzODho6dZ5lNy7d69VO48eF6Ojo2Kc2bp1K3K5nDCRn/zkJ9LuyMiIHMsPHDhgRZJpO4A+UunFwOtdnbEuQxXoSAN6K6TLAZKBu8URALu4A9Bk5BcvXvQxbp13iKdiMjpSpVIRBsfnaJUL1SPcb9Vq1edbz/uz2awVbav72dPT40tnwGuSyaTv1Do/P++LrKUAKJfL0j/yEI5ZW1ubvAeFFMdxYWHBKrjOd2Wb2gjbitadgesBo1RaXl62EsFQgmlD59DQkEzcjh075JqhoSGx7MZiMUFG+XzectujRKbVnC6G2lDa3d0tAR7xeFwk/tTUlExGJpMRXbf2Zd+xY4cYG3O5nOjGwuGwlRh/YmICzz77rNxPVcutt94qBthqtWpZwPne6XRaNsfY2JiVypL9oKGU7euAEJ2rYy2Jtgpts+A8MGf5nXfeaeU+AZqLOJ1OW0E9gI28tA4baHofRKNRX2rR8fFxEVoUoqSjR4+Kzptt/Mqv/AqAhnBk3++//34AwDe/+U0ADRsK+8zNxWsPHDgg46pThvL9dZ1UvoN7StGARaNqPVZLS0tWCTrdB7qjXks30YA2JwUqlIDWhDzPs/yRycx4HDx58qSgDwokIrC77rpLBBNVCERumUxGBLSbVe6JJ54QBsecNNPT0+K/Ty8PMtjp6WkRyrQxkLRNRqf4BYDHHnsMH/zgBwHAFzGqc7XwVDcyMiLJsm677TbrObVaTY7dPEUSxe3fv188mdyCARMTEyIESFq1dC1OV4wMTSQSAhDciEXAj2x1gW03c6AuWk7AQyStg3A4B7rClmvEZF+GhobkmRpoAXa2QDdny9TUlIwp30/3ne1zzmOxWMtka0BjHbD/RM3aOMl2+V6ccx1pzD5zbHWg0Wp0WQZujBkA8L8A9ALwADzoed7njDGdAP4FwE4AZwF80vO8whW0B8DWaWkVCmD7SnLQJycnJdBi+/btVng1J40MAmhMko6a0sl4xsbGZOK6urpkEvbt2ycop1AoSLFkrU6Znp6WiZmbmxPUXK/XBXV1dXWJaqSnp0cixmZmZhAOh/GpT30KAPC1r31NxuAHP/iBpaslU+jt7bUSabGt4eFhWQyJRELex63gwT4lk8nLhuUGFFBA1xddCQKvA/gjz/OOGGPaALxojHkcwG8B+J7neX9rjPkzAH+GRtL4S5JWoWhne12pg8zLqbSNn/70pwAahicy6/n5eWHA8/PzgmqMMSII9u3bJ4yMWc3ohTI1NSUSr6OjQ6RgKpUSSV8qlUQlUiwWJUfCxMSE6LsSiYQ48L/++usiYXfv3i0MuLe3FxcuXJA+7t+/X47Y8Xhc0Gp7e7sIksHBQXm/ubk5cV+anp62cn5QXZDJZCw0xmsSicQ1U6EAzcxpOhc00FQhDAwMyHe6FirQEDLPPfccgKZqg+/T29sr6Jz3axcxjgcF4a5duwQMUADzvU+ePIm7774bAMQF0/Ux18/h349+9KP4/ve/D6CR7RGAeCVls1lJgEbhmsvlfGkLiMrOnTvni3mgd9Xc3JzYYzg2Ov809bzu/F0r91BjjBgwuSd1XAHQ2D/cS5xr7pvFxUWZR8ZUkGZnZwXZarda/mVbbrk1TZzfmZkZQdBE3OyfVitpl1b2V88Z3xlooF/muGHb2luOa0yf2vgd51DPuU5NrMeoq6tLeIWO5GYfLofALzvznueNeJ53ZOVzEcBxNCpafxzAF1cu+yKAX7lcWwFtHjLGDBhjvm+Mec0Yc8wY8wcr33caYx43xpxa+dux0X0NKKCAWtNb0oEbY3YCOAzgOQC9nueNrPw0ioaK5YqpXq+LlC0Wi5ZuSZdaIyKLxWKiBvnZz36Ge+65B0BDolGaVSoVy3WM0k5bejOZDDo6Oqz0sDr/M6VoKpWSJFdbt27FCy+8IM+jFNY+2jMzMyItdWThli1bxDA6NzdnucXt2rULP/jBD+SdiAay2azoTmOxmEjkyclJyesxMzMjJ4Fdu3YJYtM+9DrRUCqVsgpKYw1PVsxapwNr+I7UNyaTSdEbMuCDfT527Jhc5+oYC4WCzB2RCuducHBQ5ovPPXbsmKApzgcR7j333OPzotD/5/VEjbwvFArh/e9/PwDIKZCI8o033pDTGaNkc7mcIHW+D695/fXXrfzfQDPvuEbZ3BtazfjMM88AgJXfhmNdqVTW3IgZDoeRy+UQjUatcnGAnXGPc8f34Dhu3bpV3pEInuMwPT0t651zoBNScf/wt2Qy6cvsSOSv883wNK3zr/METLdArqN0Om2F6ut+Liws+MLx3ZKQgB1hy/5zn+mMijo4R49VPp+XtcR1y+cmk8nLJp67YgZujMkA+FcA/9HzvDl9jPM8zzPGtFw9xpjPAvis+71mnPo4lclkLAMRGZY+oszPz1ueGUwo1dnZaR31+Fn7XGqjAdA4TnEBVCoV2ThLS0tyfz6fF88EndZyaGjIEgTcfH19fdYxjUKI0V268jWPyPV6Xd57YmICDz/8MADg6aeflg1fLBZlIRw6dEgCh8gIgcai4aTrIg6pVEoW98pCHAEwAjROVsYYfbK6d6W5L6JRkuuyqrGA3nkUCoVEheKmayUDGhkZkXXvMsNUKmV5EwF20Qs3TbBWJ7oqjVKpZCUX089Jp9NWUCAA/Mmf/AkAu2oTeclDDz0EoMHIdfI73ZdSqSR7Wxs4yYBJ+hryJAoW9kkLAzfaV7sJusUoNE9Yja6IgRtjomgw7y95nvf1la/HjDF9nueNGGP6AIy3utfzvAcBPLjyQoGf0yakqz1ZeZ6Her2Oer3uonwRzJVKRRYmNws3pLZjcMGSQSwuLvoMs0RSO3bssELogYZQpU5aR7mqdwXQRGFEs8vLy9J3/qZdQSmQ7733XgDNEPz5+XkJ8mEMQk9Pj6QL0MZytk0bCL0wKKC1Pz8FNTf83NycuGSSaXAcjTFYXFwM3AjfhXQlXigGjQrWxz3P+6/qp4cAfAbA3678/dZbebDneeKbrdUP6XTayuNNFYDOONbe3m4xA0qx06dPi5FK5x+YmpqSRZ9MJjEyMiJH01wuJ0fmRCJhoWAi5/b2dmECmUxG2tq7d6/07/jx44KmY7GYXDM+Pm65IbHPgO3nHg6Hxe1Nl5sDmkxn7969ck17e7vF2LQkJxKq1WqWEdMtTbby+apPVtls1lc0mUiGc/nkk0/iwx/+MIAmU9KBHLye6IWIJZfLiTsXmaJO98r7dC52Vm7ib2SipVLJ5w7HMdS+2zyR8ZpIJCK/6UIBQEMtw4hNrhcdIEIXOwqTwcFB+Y3joKMbqV7ifXze66+/7ksbq0+Sl8sb/XZpeXnZQrFEoFQLTkxM+FIBsy+1Wk0QrqsSikQivhOyTgrmJlwrFouyv3gd90g+n5frP/axjwGwDaOcK3qG6YpY7rxyDoGmKo1t63J4OpiPv7EN7gPep2sc6BKRQGMvusZSks4ftBpdCQK/B8CnAbxijHlp5bu/QINxf8UY8zsAzgH45BW0ZaEETurU1JQVVsuN09bWJgxgamrKygfOF9OMqVqt4tixYwAaecJ1lWxu1HA4jOnpabl/dnZWNkZ/f788r6urSyYgFAqJvs7zPOlfV1eXMFQ9gdPT01Yor/ZF1Qm9lpeXrQIXXDC7d+9u6VWioykTiYSV6EcHtOic3PyczWZ9XihrdbLaunVrAP0CCmgD6LIM3PO8HwNYze/sF9a2OwGtF63lyYpJtpaXl608E/wNAL797W9LkAqRNwVQIpEQIcrrqRrp6+uTwBxeQwS+sLAgagjaA1599VUrjBqwERH75RZWzmQyvjBpnUFPu7gBdpQnjckUkK+++qpcx4AhAotEIiEo29Ud63wnupAu0KiHSrSogQVJFwdZK9IRtm4KYD0ebjUcHYKubTz6vTo7O+U7N2RdAxtdc9bNnUK1VKFQEJUTXfi0kVGHrQPNSNuvfvWrviyJOsWGG6yj3T/5Hrr4uJuDR687N+qWCF6nvnDXWCwWk/FbjdY9ElOjT058oVCQo9auXbtk88bjcRlEXel7bGxMjsz5fN4qT8QXfvLJJ2WT7t69WwYllUr59IUavfJUEIvFLD0pjzfDw8MSLXjkyBFhRrfddptlYdZHXy64aDSKXC5nRddRD2yMER3q3r175XluBkedgZCf5+bmLG8Yjdh1uLrjf7ymJ6uA3nm0tLSEQqGAcDhs2REAWCdHN2pU71nuCTJPtqPtJa5nx9LSks/3X/+uva+AhvqMaiy26VZc4jPZPtCIw9CpnoGm7eXs2bO+AhWtGHgrP2033YL24tF2C7btJtnSwudy1ZbWnYFrXRAHoVAoyEtrl7/e3l7r5Tgpo6OjEo5cr9et3MzMLre8vCxBNs8++6y4eDGgRFuTKTwKhYKlS2a7e/bsER1mOp0Wg9n4+LgsTABizJqbm7OiRilgYrEYCoWCCJ+pqSnRJQ4MDAiaTKfTVjCJK6GBxiJkX8fHx2X8JicnRWDUajUrUZBegGt5svI8D5VKxdJbat0g34nvTbRDfaMxRgQv35X/HxoaEqMf72OYeiKRkMXO5/T19Qm64btzHsvlsq8yCjdgsViUzU8GxGCdYrEo8+RWSdGVW6i/37dvn6jsKOwZdMI+8l62DzTcKynQ2Rcid36vx0gzTldtwgAAHrZJREFUwGuBwAPa/BTkQgkooIBakvbvp7BwPXVqtZpVjAVoAgU3YR3QFD66ADkFGAVaNBr1IX6dcpjqMp5Yd+/eLWCAmT+pukqlUj7VGJPJPfDAAz70T3R/4cIFy1UZaBjB3TgH19uq1XfhcNinltM+7W6hY/28TVfUmC+nK2wUCgVBGLVaTV6gt7dXJi2ZTMqALi4uilHx9ttvlwKyqVRK0FqxWJRgmIMHD4pu64c//CE8zxOENzIyIgtQZxccHBwUjxaNbAYHBwVdlctl0b3Nzs4KWurv75dAjtdee81ChMYY6cvJkycFRe/bt89KVqRRt0a2uqI2daijo6PSD2241OHH9XrdqkK0lsS0owsLC77jpg5qoO6a32l/V/7GseKJp729XVz3XOSpq55Tr1ypVKx4AaCJtnt6enxl5fi8QqHgywBI6ujokPF1q7skk0n5TW9AjjXnlIFni4uLEhRGxK49W2hEd70ctm7dKidKN5sh01KslLVb09xFAW1u2jAViv6s8w5MTU1JZJLO8XHixAnLkMLN2dvbK0aG8fFxiwG3qnwTj8fxzDPPiK9woVBo6arz4osv4oknngDQqFjOzVmr1URNo4+1c3Nzoq8aHx8XlHDzzTcLwnAz7Z07d07a2rp1a8tsbFpFk8vlpK8XL160cmhwU2ezWauiOduZnZ1tmeR+LYjqMI2qSJqh0+ikEQb///GPfxxAk3myr11dXfjxj38MoJkdkCiov79fxlIHiJBJU4VCgbu4uCjjwfnUkZhuKlz2vVKpyDrkdzpog20SXeVyORkHMmkKmhMnTgiw4G9UqRw/fly+41hxrmZnZ+W9KKC57iuVinZVW9MI26WlJStSmvNDTyydlI7EcdRRyySdelfHCOj30jYnznW1WvWtH1IikZBslF/72tcAwIrmdotDcK1pAyyfrQGj6zKqI41d3bd2W271ruwz/+p9zfXJvzq3kxs45NK1K5IYUEABrTsFuYveXbShXiikSqUiyGNmZkYMjqlUSpBPV1eXGBvD4bAgr/Pnz4veqqOjQxCCLgyhvVMikQi6u7tbljZiZXWgIZ35vC984QtiuPzVX/1Vkei33Xab6Nw8z7M8SqhO6ejosI7KS0tLePHFF6Uvhw4dkncl6ZD5paUlC+3w+4sXL0r/KpWKqAm6urrE+yYajcopZHJy0pdvZK2IKhQdGEFVAI1/utIS54go5rbbbrMKTwBNBG6MEfUDVU8MyNBBUjRsGmNWzQQINE8/HCPtV8854P36hKgL9QJNBJrL5WRc+c7nz5+X9cXgI537nFkr3XDxvXv3ykmUOmb2XadgIGkVVCt96duJsNUBWuFwGMVi0VJfUlWl1XOuDpuIWmccbZVVkGvZzUao1as67YT2ugKaY+p5npywec0Pf/hDAI1TDp/5iU98AkBTBRWJRHxIWpdp4xrUqj+3nJtW57l5dngyy2Qysq41TyLpuBc9LrrQzWq0oUZMrU8kk5uenpbv29vb5di0c+dOYQYzMzMycI899phM3vbt22XQp6am5PgRj8dlQ/B52vVJ+1+6bj5AQ23CY/yWLVssA8stt9wCoFEbj/eePn1ahBAnA2hM9mOPPSbfve9975PjcyQSkcUxPT1t+YLyXZeWloRZaPVNV1eXqJ10wvyhoSErf7jWkwf0zqa3G2GrA7Si0ajHCFvXP50CMJ1Oy57j+tXJtly3Pi1c+R2FIplaJpMRxqWNpxQiBEc6aRn3t46e5W/c67xeR4qSoVIdSTVnOBwWO46uz8rPOtWDGnMAdik1oMEzNP/RbUajUct+o9usVqubr6RaQO888lYKGlcqFcu/Vf9dXl4WAUzdNIXzzMyMnEpokKYL39mzZ0XIMepVC1+9UQE7KMjVdw8NDcl1PDlR+NdqNcvlEWjm9+7p6RHhp7PVkSg0T58+DaAhdMkkeDpkm7Ozs3Kq5Kbm6e706dMSiEJGwne4cOGC9N09ydRqNZRKJe07/bYjbAO6vmjdGbj2JOBnbZScnp62jFtc5Pl8XtJC6nDxoaEhfOELXwDQyECmpR6ldzQalQ3HvCs6YpCIVH/WKDUUCslGevjhh3H48GEAjU3G45yudXjx4kXZsNu2bROJ+tRTT+H73/++5Oq45ZZbpB/ValXyX+gE9bo4s84tUa/XrUIURBLJZFJcqqampqz0nfo0sJZEP+RyuWwdQTXNzMzI+7n+3Ol0Gr/wCw3Xc6Iy+vnv379f+k1my9NHIpGwjtFAYxx1IBPQ9Dfv6OiQQg5kznRFW15elnmiJ5M2xjG1MOebjDwcDsvaIPOdnJyUE6WbQySXy0m7rnpF+7Cz7iqR4YULF+Q5HD8ixIWFBQlOW+vcRUz7rGvKArB85l3DrvbQoeqAc8ZrdOFi15Wvo6ND2tfFIbh++JeAYNeuXTKGnGudn4XPpOMC+UgymZQoXzoscH+FQiE51WpVFdeN6xYZiUR8gpXAo7293QpuYltA48TAvrpGXZ1DZTVadwau/Sc1OtM5uTmIuVxOBqGnp0eQS7FYFJeqbDYrG+Hv/u7v8Gu/9msAGpOqIyx18EwqlbKOR671mP1zI8WAxuD+/d//PQDgU5/6lFi/0+m0PO/8+fMSyJPJZKR/8/Pz2Llzp+h0NXOuVqtSkWdxcVF02probQDYBZx1jvGZmRlZZKOjo1YucnfDBPSOpCDC9l1EgQoloKsmqlCKxaKvMKs2JNJvnQiFekQd0UqjLhFLKBSS6908KTqJl0Z9/I6IlYL/zJkzYgAl8mZJtv7+fnkmUS9ztywsLMh78Tna1ZDvqvOksI8kIi+OFdDUyRKwLC4uynOIWHkSGR8f9+Ua0ciXCHytI2wZZasjpfU4dHd3S5/5XrymWq3KSYUnEu0urIt2AM1TSqlUspwRgMb64emHz9bRugQ8XG86XwzXDUEVTze1Wk2AnQZGQOPEr7MWsm2+mzuHXV1d8q7UwxPBZzIZq+YAYO8PN5pYj9HlTs0bxsCZwxhoDBoHaWZmRlDjzp075VjS09MjL6aPFePj49LOm2++iW984xsAGtZ+bqJqtSptMmWs9ldu5Rnj+jNzw6ZSKTHgvPrqq7IYRkZGrPwLnMyxsTE5gvX29uJ973ufMJRYLGZlZOSCbGtrsyzlOv0AF0A8HreMJrrWHjfL8PCwoPFqtXrZ6h4BBRTQ9UXrysB1MibAr5oAGlKYzHZ2dlYk3JYtW0T3pZM0xeNxSy/HnBP1el10kjqIJJVKWUWUdc5sz/NaVsAIhUKCMg4fPixthcNh0dGnUinRN7e1tVluinzn2267Dbt377bc6PjeExMTIgDa29stVROZuY4y1KlldbTmzMyM9KNQKFiZ0a5VzmgGfGjbhLY/8D2IKqkqIpo5ePCgCDkaAnUpODdxEBMQxeNxWUN8f2OMlTde/7Zt2zZBNOyDdl2jgKNXAFFSd3e3LyOdzvWic1yzTY41VX18V13RiWtHZ8sjGuVphWtCt+kWRS6Xy9ekpBrQGBftDUHjqs7nolV5+m8ymZT17RYl1uH3fC8d4EbEql053bz6fE6lUpFx03mHSO6JTBfJcANzOE8aLHG8Z2ZmpI/kB9Sn63TN/I68KxwOy9wQnXPOS6WSPIf6+1Zqz9UoUKEEFFBALUmnkyXj4umOAqazs1PUFzo9MNAAYG7UKBnY4uKiCFMKWjKusbEx+cz7tTsg/xJIRaNRaYuMWHtBueXSeE0ul5NnUwBoN2QCRlIkEpF3pXcR/6/taq76MB6P+wycOnMjgQ1Vd9Q0aFCxGq0rA3cRQisEOTs7K5JodnZWBlgX/6zX61ZYMds5f/68fL548aJMwJYtW0TnmcvlLP9o1/e7VTGEWCwmUjWfz1t6Ng52Op0W1UitVrMGnl4r73nPe5DP5wVJFItFmbxKpSKLLhQKWShD+53rz9rTQ7epUbdbJeVaEOevXC5byFn3UVfs4fw+/fTTABqIhbpebiTet2fPHkHEbi1EoIn0qbJi8iWgyVC0x4Su9MN+AY3x4QZiVkg+r7OzU5Aa79cFlt2xDYfDlj4XsFEf0SuZoV4rPIG4pxTP82TudWg3fwuyEb47ad1VKJq0blcfYbj4x8fHLX0xJe7s7Kx1NNdMly5gupDo8PCwFdlXKpWsvCA6Ib1Wp3Cj5HI5ebaOxgKa0lwn+NeC5MCBA5LvpKurC57nyabUBY91m9qPOJVKWa6KWl3Uqnq1Lvu0tLRk6fev5QbnUdvNa0GGXiqVfImkKETPnTuHO++8E4C/HFUqlRKGyjk/d+4cgAYT5fM4n0ATHVGVxPfWhilez/6dOnVKXNHIbDWSdKNYKTBOnz4tfSVIGBkZERUA1T1U7aXTaWmfTJprIJ/P4/HHHwfQdJXThS7YV/bLzZlxLYQ0S6pxXjhuFHY9PT0CrNwI2MXFRZkzCjJdfFgHowGQ4LeRkRFZG1TdaJWhm70vEon41EpuX4Dm2tLJ3nidm89FAyWO+/bt2y2VCWDXJ3UNrzpni5uFkDQ5OSngheo2HYl5uT0b5EIJKKCAArpOacNUKFpFsbS0ZBmjiDi1TzglGNBAKpRWOq+Jzox28eJFKyiHiIZoX2ch01JRG9+05CXC1pK2Wq1aATcaIVHyDw4OylF8cXERi4uLgsCKxaIVPst31NnY2GeSm6YVaKANojGd/zgWi7Us3bTWRBVKqVSyAoqAJgrRWR+JnDgnL730kqTfdbPC6epGRCa6eAPXAUnrPHVlE6ARDEM0z6hOqjHK5bKcsviX7/Lmm2/6ThQcb53JknrbUCgkn91KNL29vYI8qYaha+N3v/tdUaG4ettIJGKtD/3b0tKSdfJaS+IJlfuKc8B9efLkSfHK4mlD95kqRvZZV7ziHLu5v/P5vIyJdjEkgnZVSRpJu/tjenparudv7F+5XJY9wbnWFXA459Rzd3Z2ynp2A9W08ZzP0a6W7rqhlmFoaEhOM25qAa0OXI02TIWidc+AbW3mi4yNjckmz+VylisfB0T7zvb398sz4vG4bO5arSYTWq1WEYvFLOOI61fL+6mrvPHGG+UZo6OjllpC62V5TSKRsCqcc+FVKhVLtaP1lul0Wu5PpVLCwPUztOugTsSjDTyZTMZK16oLH19LPXhA70yi3zrXoHb3BRrqnxMnTgBo5kehAGxra5M1R8bNNT4/P+8rsq1LqvE6Gj1LpZIvlYCuM8n95haeaGtrk72h7TG8X3v5ADZY4vVadaNzmLCv7DufyesJ+tLptK8ABHnTiRMnfMKe/OFKANdVMXBjzP0APgcgDODznuf97dW0F9D1SXS5KpVKLXNjA/YG5Abipnn++eelHB1D1lnj8ODBg4LiyDSohxwfH/fpWI0xVgg8YGef46akTpp90OkVaEfRpyC2wb6zbV0Oju+3c+dOn/GSm/nIkSOiM6ael20//PDDMn7slxbe1LtSQJMZEEkGRsx3H71tBm6MCQP4HwA+DGAIwPPGmIc8z3vtrbalpR5zLwC2X2yhUJAFm0ql5PhZKBSsosakRCIhC177WNMvWxsttLGSmyCXy8lxe3BwUKRjuVy28pFoKamPaJT60WhUNuHy8rKVM0UXhPU8TzamVsfo46unqoN7nifv53mehWx4HJybm7OOc5dLTRlQQJq0gV8byYEm+p2ampJUEVQ16ApZNAy7mfa02oP7gc/SJ2RdlNuNltRqUNfPnG3yNAD4VS/sh+4X90gsFpPrdd4k9pn3aUcMjhHHgftZp72gHz1PLUNDQwIANI9y21yNrgaB3wngDc/zzgCAMebLaCSNf8sMHLArXHCyZ2ZmREeZyWRkMWg9VTQaFbSn9ZHJZFIYWXd3t1j86cmhnfvJ5Pr6+uSeUCgketJUKmW54+lFzUXFSQAaxz4d+KH7Sz04SevuuFC0/r1cLvuOr3yGzmXNd9AVebSbYiQS8W3CtaSlpSUrQRH7w7np7OwUVMqNoSuW/+M//iMA4LOf/SwASMKvhYUFCXcmctV5oTm2RMu1Wk3WDI/0RLptbW1WIWXdv1qtJkifzyFjMsb48jlzLrSaSleR4bzyeEzA0d3d7SuQ/Dd/8zcAGmBEMxAAVmoCrWJzx/5KEh8F9M6jq2Hg2wBcUP8fAvDeq+tOQNcj0Q+5Uqn4ckLr6u86+ozfAXapswcffBAA8OlPfxpAA825iIYMsLOz03LJBGzXQjJyCrTh4WHxKSfj5v2FQkEAAgUcmby2s1B3Sd2sMcZXuHdyctI6Bel3BpoA5K/+6q8ANN0IAX8uaa2KYh/YtlYVXSs/cJ5YXRc8bdSkgGTBDfbv0KFD0keqvThPFy9etIANYCNjgg2tJ3cFF/ukT7yu7388Hpe2dE4Tkqs7J/CIRqO+qGLXzVi3FQ6HZU24hvxwOCxrkWPEoh66JJ9bxOJK5vSaGzF1hQ9txDTGyMtHo1HpqA740El05ufnrZSMrcLfdRJ2rWLQBkaGdOsQWqKjLVu2yGZvb2+3rOMc1La2NlGhaJ/u+fl5uVcbDHWdSL4bJ2ppacnyXCGD0mhZI36dwyWVSsl7Z7NZWYhdXV3ybpOTk5bhxt0wAQUU0PVNV8PAhwEMqP/3r3xnka7wYYyZKDWgyKS+RgdhbADl4fRnE9C17tOOtWyMboTVatWKHASaeUVqtZoPXVLoFAoFX+WRz3/+8wCAH/zgB5IimAKVSEznFdF51V1dv/bEcYtFUwiePXvWQvaastmslSMDaLpARiIRnzucrh5DHSxDzx955BH86Ec/AgCfF0Y6nZa2eBrQthQ3IlXnkb5WgTza3Vc/k7S8vCxjyNPJ0aNHATTmmRkdOTac+56eHlHvEaSRQqGQADE+Lx6PW0gYsHOiuDnJtQrKzZJI0gZvgh6d3lkDJ46FRv1Acw2n02npM8Ei+zA9PS3Im8U7dKRtK903+3ItEfjzAPYaYwbRYNy/DuDfXeoGz/O6jTEveJ53+1U8d01ps/UH2Jx9CujdSzohm5u5U5dGow2BjOvVV18Vxk0fcaoX4vG45QYI2MUUXHXCwsKCLz2DNn7qkzfQjJRMpVK+FLA6BYHrz81rEomEgArNrF0VCp+bz+d9NgqOx7Fjx6QMnE40B8ASvK5a5kpUYm+bgXueVzfG/D6AR9FwI/z/PM879nbbC+j6JSITjcC5AYlmt23b5rO287eZmRlZ7PyNG79UKkkBDaIfMgHtY699iYlamY2SBTS0Jw430EMPPQSgsXH/+Z//GQDwm7/5mwBs7ygiY77Do48+CqCxIV00r+ubUvdJxtDW1ibGVbbPcejt7fWhf+05QTTv+gkzdiIwYr776Kp04J7nPQLgkTXqS0CbhAL//oCAphuhjvp1Sw7S+whoChsK45MnT1qpZYHWefXZlq4q5aoodF5811Cp3R1dt0etNtOeQ0BD6BNlu8XMq9WqL0LU8zzpD5G7TlNNGxaFNmMZjh8/LrEFbtCOTke82hhfijYineyDG/DMS9Fm6w+wgX16O/79WgdOpKlzmwMN5KmjUwE7ERg3fauqLnTndI+vlUpFjrDcpLOzs6KLpaWfGymdTvtqOupkUUTl1L/T+6Wnp0fsNKyhyP7mcjlf0JLe6DwF8HhdLpel//yOzCCXy/kCeXTyJzIUjgNPA5VKRSryBPTuonVn4CtGzU1Dm60/wIb36W3597P0lk4ToP/q4rduvgrP83xMnYy2VCrJ9VQvUL9ZLpeFkRLFjI+PWwybz+bzKFjcsOdwOGx5DgFNw+PMzIw8kwJJp6U9cOAAgKavd3t7uyAzMl0a7HQCfx2UxWv5jlpI8R10Rk39zjS4XSsG7qJwoDlPOkugawgcHh5e1e2uv79fxpRRqrpgCwW59pxyA3+0cZXXuai5VCr5igXz2nA4bGU11dRK2Gv1nFv0IxQKiWGSwIHl+s6cOSOulm4+H52XqdX8BdkIA3qr1Mq/f5t7kTHms8aYF4wxLwS614AC2hhaNwS+GfSqxpgBAP8LQC8AD8CDnud9zhjznwD8nwAmVi79ixX9/nr16yyAIoAlAHXP8243xnQC+BcAOwGcBfBJz/MK69Wny5HrHjoxMVGamJiYJPrYQFp3t9AnnnhitZ/Wuy9r6h4K2EVXWv1fRzWTtCGaUbTu/YuLi5IsjqcO/g2FQr4yaLr0oYtYtbudLq3H/xP18zueogA7EEdfk0gkfImxQqGQ1Uf9rqOjo5KnnidAhs2PjIwI8tYurXwHd0z1yfRytC4MfC3zplwl1QH8ked5R4wxbQBeNMY8vvLbf/M87+/XuT+a7vM8T2/2PwPwPc/z/tYY82cr///TdejHFfn3a9pM7qGbpR/A5urLtSJtQHQZ+fz8fMssf/yNKYRZyIFGTZ3XhC6J1WpVmLlbkUgzcDdPig6qc/OlaBWKS/o3MtRMJiPPoe861WynT5+WtLBUl9AWUywW5Xp3rHRUqMvIr4SBr5cKRfSqnufVAFCvuq7ked6I53lHVj4XARxHC/XAJqGPA/jiyucvAviVdXqu+PcbY2Jo+Pc/tE7PDiiggN4CrZcKZdPlTTHG7ARwGMBzAO4B8PvGmP8dwAtooPT1VFd4AB4zxngA/t8V9USv53msVjCKhtrn2nck8O8PSNFqboSa3O+IMmu1ms84SLVCtVoVVMpoTRoz+/v7feoSnezNRfPaFc91IwyFQr7c3ToDqJvzW+c/cYN8SqWSuAgyfw3VJhcuXBAjJg3rVJvoKGMib1el1IqudSTmdUvGmAyAfwXwHz3PmzPG/AOA/4wGI/3PAP4fAL+9jl36ec/zho0xPQAeN8ac0D96nuetMPd1obfp379ZvHk2Sz+AzdWXgN6BtF4M/C3rVa8VGWOiaDDvL3me93UA8DxvTP3+jwD+bT375Hne8MrfcWPMN9BQOY0ZY/o8zxsxxvQBGL9kIxtMm8Udc7P0A9hcfSG9HWcCjQIvhRh1cQzALpVI0sY76rSJUKkLn56e9uWEAfyZA3WfdEI7/Rz9HUm7HLbKXgjYefh1zhYaZYnAqecuFAqCzvk+dFtcXl725ZC5lJ5bpyu41HgD66cD3xR6VdMYjS8AOO553n9V3/epy/43AK+uY5/SKwZVGGPSAH5x5fkPAfjMymWfAfCt9epTQO9MUs4EHwXwHgC/YYx5z8b2KqCroXVB4JtIr3oPgE8DeMUY89LKd3+BxkK+BQ0VylkA/9c69qkXwDdWJG0EwD97nvddY8zzAL5ijPkdAOcAfHId+3TFtJHuoZdwC90QF8wVBvkCgGHP8z62kujtywC6ALwI4NMrRvyNojUtwgL4sxXyOxJ10kS92tOCqNR1sZucnJSgKCJwXYXLRdtAE527Yf3VatWXxdAN0NH90rndGTjFAKPJyUmJfuV3ROflclneg31wXRv1d5fSbb8VLxQThN8G9HZphWGdhHIPBfAb6+UeunJy6tNuoWh46/wWgGnlgtnhed41d8E0xvwhgNsBZFcY+FcAfN3zvC8bY/4ngKOe5/3Dte7HJfr3CQD3e573uyv//zSA93qe9/urXO+1UlcArfOQuNfq//MzGW0sFrPSwQJN42IqlbIqEQEN3203slbfr5OZ6edo/sbftIpHp1IAmkKkVCqJkVUX5eB3blriSqViRVfqNrUqyeW3rVQk2sCp2nqxlUtqEIkZ0NXQhrqHXsItdN1dMI0x/QB+CcDnV/5vAHwQwNfWsx9XSzrCdqP7EtDl6V3phRLQmtGmcQ913EI3wgXzvwP4EwBtK//vAjDjeR6jW1qmJFhnuqwzgRthu7y87CvAAthGQtKVpFSgeuFt0mYpvrIR/WgZZRsw8ICue2rhFiq/rYcLpjHmYwDGPc970Rhz77V81lXSWyrCspkibIHNE9m6WfoBBAw8oKujDXcPbeUWivV3wbwHwC8bYx4AkACQRcOwmzPGRFZQ+Ia5zpI2kTNBQGtEgQ48oKuhDXUPXc0tFOvsgul53p97ntfved5ONMbgSc/z/j2A7wP4xHr140rI87xHPM/b53nebs/z/stG9yegq6OAgQf0tmkFWRLRHQfwlXVGdHQL/aAx5qWVfw8A+FsAHzbGnALwoZX/bwT9KYA/NMa8gYZO/Asb1I+roc0UjLRZ+rJZ+hG4EQYUUEABXa8UIPCAAgoooOuUAgYeUEABtSRjzP3GmNeNMW+sBESt13MHjPn/27tjlIqBKAqg7+IKdAeCNq7A/Vha/HW4FPvfiVhbWWnjIlyCFpmAmBQB+UkGzmlCkmJCisvA5GbykuQjyXuSQ7t+keQpyWc7nq/0PGdJ3pIc2/llktf2Xh7b+s8mBDgwsfF/U8aNV26q6raq7tvY4yYn11X13M7XcKhhjWf0UMMGMFdV9VVVdys9x4QAB+Zs1rLVsF1OgANzFm1ufWo7atiONdNdNWwFOLBLfxu2v+99D5/PrdawPeU4/6GJCczZtGWrYbuMGTgwZ7OWrYbtcgIcmNi4Zathu5AmJkCnzMABOiXAATolwAE6JcABOiXAATolwAE6JcABOiXAATr1A/eeUDwvNLLxAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAACTCAYAAACXvkKnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9SYxsaXbf978xZUbGPGTk+OYauprNJovdNEA2YDSshQBbsjZCL2wIlE2AO0GGbViUVl7YAL2xzZWNhg1DBgRQ8gDQWoiAIYALc9Fkd7NFVnfVq6435hiZGXNkZAwZcb3I9zt54r7I916x8nUVhfyAxHsZGXHj3m843//8z/+cLwjDUDftpt20m3bT/vq12Jd9Azftpt20m3bT/mrtxoDftJt2027aX9N2Y8Bv2k27aTftr2m7MeA37abdtJv217TdGPCbdtNu2k37a9puDPhNu2k37ab9NW2JL/sGbtpNu2lfzRYEwbVqjIMgeOXr/u/R12KxmIIgUBAESiaTisfjSiQSisViisViCsNQs9lMYRgqCAKlUinF43HF43HNZjPNZjMNh0PNZjPFYvO4NQxDTadTzWYzTadT+/9sNrO/+3+j/7/qPf5vPAd/98/6hlLukzAMV6Mv3hjwm3bTbtrnbkEQzBkeb3CvMsRBECgej9v/o6/5vyWTScViMTPUy8vL9lOtVpVOp7W2tqZUKqWlpSWNRiNNJhOdnZ0pmUzq7t27ymazKhQKOjs703A41CeffKLxeKzl5WUz1rTT01MNh0O1Wi0NBgMNBgOdnZ1pMploPB5rNpvp/PzcNgo2C/71m4B/jR/aIgPuN55FfSpJ0+n02aJxuDHgN+2m3bQ3aq8yMDSPNqV55ByLxZRIJOb+D4Lmd66bSqWUSCSUSqWUSqWUyWSUy+WUyWS0vLyspaUlZTIZSdJkMtFkMtF0OtX5+bnd52w202Qysc0hmUwaquZe+T2Xy2l5eVmSlE6nlclkNBgMNBqNNBwONZlMNBqNzEBPp1OFYajJZGLXCYJg7m9sENzPIiTO3/nsVf16Vbsx4Dftpt20a2neUPO7R9exWMzoDwwqxgqkzfuWl5eVSCSUTqfNWIPA0+m0EomEzs/PNZ1OdXZ2Zt+JYWTj8PeWTCYNpfO3s7MzTadTFQoFSdLS0pLi8bhtHOPx2JD4aDTS+fm5/XjKhQ0EpI5Bx3B7VE57HTJ/k3ZjwG/aTbtpb9w8JRJFkd5we2QNusYwYqQxlnwmkUgomUwaZZJMJpXNZs2AJxIJ+1ssFtP5+blGo5H6/b6936PYqDEE8Q+HQ9tAhsOhRqORMpmMGflEIqGlpSWlUimdn5+bIQeJn5+fG62Cwca4Y7in06mhas+l+x9v4F/Vt69qNwb8pt20m/ZXahga0K7nsKE/vLHG+Pq/e7SN8Yz+DWPL34bDoc7Pz9Vut4028feD0Yzy1GwmvD+RSOjs7EyDwUCSlEqltLKyYtw7RnxpaUlhGOr8/NzomuFwaMgbnhwDzv3xHj4HWvcBz6gR5/VoP1/Vbgz4TbtpN+3KFlVLRI2Jp028IfcGOUqJeArFvwbvzQ/X8bzx+fm5zs7ONB6P1e/3JcmUJp6ugM6IBhL5m1eunJ+fazAY6Pz83Gie2Wxm9w43D6fO+7xxhtKZzWaKx+O2SfDeIAjstSgi9/37qv5f1G4M+E27af+WtSAIipL+F0nfkBRK+k8lPZT0zyXdlfRU0vfCMGy96TWjqHERXYLRTafTSiaTSqVSZriXl5ctGJlMJpVMJu1vfB7DDmrHeGE4W62W+v2+ut2uJpOJbQzFYlHxeNwCh5PJRKenp4rH48pms0Z5wJlPp1OjbniOTqcjSWq1Wkqn00qn0yoWi0bNcC+JRELT6VTJZNL6BgqFa0On9Ho9Q+sY/m63a2oWL1l8VX+/qt0Y8Jt20/7ta78v6Y/CMPy7QRCkJK1I+ieS/nUYhr8XBMHvSvpdSf/odReKou6oBBDEDYJOJpNaWVkxA43hxhCurKzMcczeWHsVCugYYwjXfXp6qrOzM4VhqJWVFfvuKOft+Wl+oC/4jHRhwFOplBng8Xhs9zAajeaeL8rle7oGwz6dTpVKpUz9Mh6PjWv398K16ePX6cevajcG/KbdtH+LWhAEBUn/rqS/L0lhGI4ljYMg+DuSvvvibf9U0h/rDQy4u67962kTrx4h4JjP57W0tKR0Om2G2/+LQffXQToILQF/3O12NRwOdXp6qsFgYIYwHo/bBrG0tGS68SjdMhqNNB6PjYOWNBc85TtJ8jk9PZ0z9BhgSXMGfGlpyYw8zfPg0+lUy8vLpl5BkgiHDzqX9JJC5SqDvqjdGPCb9oXb583Y89l1GAHkZfCg/O6z5jyq8ujKa29fN/EXoZ5FvG709dddO6p19jwvRo7r8BwYFdxr/o0mg3zO9qGkY0n/WxAEvyLpR5L+oaS1MAwPXrznUNLa57lo1IBHk2yWlpZUKpWM0sBIE7ykH3gtlUq91M/0CYoPNNjj8XhOwuc/4xG4dCkfjAYPfSIOQckwDOcCpoyPD04mEgmja3ifR/zpdNruJx6Pz42hv4/l5WWNRiMtLy9rOBy+FEDlXq/Sil/Vbgz4TbuWFnWzrwrIBEFgKKxQKKhYLGpjY0O3bt1SpVLRvXv3lM1mlcvlzCVnIT979kzNZlOPHz9Wt9tVp9MxVAWiki6NpDeGkuaMDW7+0tLSS5phFj3BMnhMjAff4dGnpLlMPDjg+/fvq1Qq6Z133lGhUND6+rot6qOjI/X7fe3t7andbqter+vp06c6OTlRq9UyQ+YTRfz3s9g95aCLNf1rkv5BGIY/CILg93VBl/jPhldtukEQ/I6k31k0tlHqhM0KtJ3P57WysqJ8Pj9Hm/ikHW/AffN8MKgVI4pRxABH55o3vhjYq+YA84Ax4P3+Prgm7zk/P7cN2Adr/XMt2owSiYR9Nx4G6J25xHf4TM4bA37TfuHtdXyedImWVlZWLBW6Wq1qe3tbm5ubKpVK5n4T1R+NRqrX6+p0Onr06JH6/b7a7bahIr7TL26Q78rKinGrLDg2hVwup6WlJWWzWVuA3DdGu9PpzKVSe0kanOlkMplLy/YI7fz8XPV63YJu5XJZw+FQuVxOKysrtknhWksXmwep3oPBYK5GR7Q2By3y+66k3TAMf/Di9/9TFwa8HgTBRhiGB0EQbEg6WjRGYRh+X9L3X4xpGPWWfD8SlKzVaioWi1pbW7PNOZVKKZvNWgDPe1P0P/05GAzmjK2XJmLYMOjQJ8j1CJpGOWo45mQyOWckJdlYJZNJ9Xo9nZ6eqtfrGQWCUR6PxwrDUL1ez7ht/uYVM94TgfYZj8caj8fWXyQK8RzpdFrdblfNZlOJRML6wMsMUcq8qt0Y8Jt2bW0RcvBoiQWG8VpdXdXa2pq2tra0vr6uQqGgbDZrBnA0GqnX62lvb0/1el2PHj3SaDSaQ78sTBabTwjJZDKGDr3xiMfjljpdqVTsbxjI0Wik0WhkHCiuNIkZSNkGg4H6/b76/f5LsjMW4snJiWKxmAaDgcrlsmazmW7fvm0GLp1O6+zszAw4iSPtdlvSRaYgaC26OS4KcIVheBgEwU4QBO+HYfhQ0t+Q9LMXP78l6fde/PuHn2dMo3JBkDfeEmOHAce4XUW9pFIp68vXBR8x3KB0qAn/uqdUvLbaI3t+930Y/S7/O9caj8dGj/B/gpjRrFIABMaX7/JUmg+oeu8Orp0N5gaB37RfaLsqko62NpPJKJ1Oa2NjQ6VSSV/72tdUqVTMeKfTaZN8tdtt7e/v68mTJ2o0GhoOh5JkrjdGFCpkY2PjpbobKysrymQyunPnjpaWlrS8vGwqhnq9rsFgYDU2SqWSxuOxptOpBZhWVlZ0+/ZtbWxszKkcMATNZlMnJyc6Pj7WYDBQu902tYQko4uCINBgMLDnOjo60urqqh48eKBsNqu1tTVls1nTRedyOSusBJUDQsMQvarPJf0DSf/shQLlsaT/RBelo/9FEAS/LemZpO+96bj6fsUwZzIZlUol3bp1S6urqyoWi8rlcoauz87O1Ol05hA4n4demU6nc4k5IOXxeKxut6uzszPrU4KM/DCnMIjSBTXiqRPvPaEwYcOPUiyLjDjjDJ0iybzH2Wym5eXlOSqO92PUB4OBGfulpSUtLS3ZmOXzeXW7XavnAt1CX/CMr4uD3Bjwm3btLcqBg9iWl5dt4ZfLZZXLZUNuKAPOzs50enqq4+NjHR0dqV6vGwr1KAfESo0Mj6ShNTKZjDKZjFZXV62GRrfbNS0xCgUWHYsIJJ/P51Uul7W+vr4Q7XLPGCJoHZQJbF7cE+oKONBisajZbKaVlRVD5HgY5XJZknR8fGwehqcBXtXCMPyJpG8v+NPf+Dzj6BubItx+Lpcz5F0sFlUsFpXJZObKt0qa46NBw4tS0alRwmaF6uT09NT6TZIZNj9WPjGH5r8rWiaW6/jXGSd48TAMTQkTi8XMw+KHDWfRc+HBvRiLOeQPree57tPTU0myTTqZTM6h9Fe1GwN+095KY3J6V3t1dVWVSkXvvvuuKpWKNjc3DSWHYaizszN99tlnOj4+1kcffWSTlypxZ2dnds21tTWtra2pUqlY4gW64aOjI0vIgKrxAaRisahCoaBut6uf/OQnRpf4IGQ+n9eHH344p6SQZDphT5M0Gg0lEgmVy2VNp1NVKhUzRCcnJ5pMJspkMmYkTk5OdHh4qGazqXK5rG9/+9vK5/OqVqsWI5hOp8rn85pOpzo6OrL+xMBf5e1cd/Pom0Dc8vKySqWSKpWKKpWKbcaMQbPZfCm4jLElrjEYDMyQDYdDnZ2dqdfrWb91Oh2dnp4aPQVFhnLEbwo+yEjzf8MYepVH1KjTv+i3MdpsSMwfb8D5IT0f4316emoSQf/sGHCACDJIYiB4XHiZ0cD1ovYLNeCfV24W+exLEzQa+fWa0mgxHVw4H4zxP9EW1WT6IBYLN/p//97oNb5qLQzDz1f27DUtOj4eKS8tLSmXy6lYLKpcLqtUKhllgjSr2Wyq2+1qf3/fJjLXwBgQHCsUCnaNarVq1AwGXLo0HH4hYcAJbM1mM1UqFcXjcZ2enhoqBFGy2LzBwIBKsprR0B8sdowQVfKgT0CP9M/p6amCINDz589VrVatL1BygMRJG/d0gKdSosqM6x5XH6zLZrPKZrPa2tpStVrV7du3lc/nrUIgBtCPBX3HuhuPx+p0OnbP7XZb/X7fqChPR1Et0PPcPHdUlQKa9zVPPFLms2wkeGrSJWLnXlEi4UGwgbD5xGIxTSYTm08k66Ac8rXGva3w3iibIfOk1WpZUJt78s+7qP3CEbiX/fjXfOOGvVGI8kHeMKMsAOktLy8rm82qUqloZWXFtKn8Hz6Kz0UNOROBe8F9xc1rt9s6PT1Vp9OZQw3wqxgDX2oyKmWKPqfvi0Uc55su0KskfL4tSt29jhYNWKL7BX0TrNzY2FAulzMFiCTt7e3p+fPn+vjjjzWZTMyAkWQRhqGpHR48eGDjt729bXWiWZjFYlGNRkM///nP1e/3NZlMbKx9MDKRSOiDDz7QycmJdnd3De398i//siF7UFev19NoNDJFyXg8Vq/XU6fTUa1WM2poOp2q0+nYIQKFQkGNRkMPHz40pMhc9ZmFt27dUjKZ1OrqqgqFgmazmdLptKkpvIwOJPkGXPi1jKkPXEKDFYtFlUollUolK/kaBTpRSZw3vPDiJM/0+331ej0LDCPh9Aogv06juv8oePJr2auEeG90Pfr3RP/PfPGfzeVyisViVmo2mUxawJv7XZRZKl0CCeZCNpvVeDxWLpezucpGFI15RNuXYsAX/X9RdH3RBPVpt3QECCybzWpjY0PZbFbFYtEWFnUNoiicH28kfWdHJwED2+/3LbDS7/cNMTQaDQ0GA1vYGHN2ZC9nik48HzlfZNDfFGX5a0f78U2M+3U0rwSBR67VanPGO51OKwgCNZtN7e/v69NPP1W9XrcIvneZ2Xzff/99041jkCuViumNPc+I2+sL7sNDB0Fg9TqgZUCEXp+Mq0zwsdfr6enTp7a4mFfVatV4/DAMDUWNRiMlk0l1u137jqOjo5fqcQwGAx0cHGg6neqdd97R6uqqzefV1dU55QvcLEj2F+XdUalvdXVV1WpVW1tbZsBXVla0tLRkcQU8Dt/PFItiA+RwhPPzczsF5+TkxDIWvUzTz38vL2SDZ11xnz6e4WuFMzelywJYNE/xeG7djxX3TRJSr9ezeYb0U5Kh62KxaOMmyRC4lx1ynwR+l5eX1ev1LHAKL35V+0pw4FehzOjv3ujiTq+srKharSqXy6lcLpuByOfzlhlGB3vqhO/1nUPQye/wvO4No08LXl5ett2zUChoMBio2+2q0WiYxKzX61lm2dnZ2Vzw5nV9En3tdVK9113jbRtx7gXExrFWUa4Ug9vpdPT48WOjTtDLwjVLMm/q7t27KhQKKpfLZsB9dTtQKpw5adKeD6WhmMDookhJJpNzLr8kkzO2Wi3t7++bVpu5ViwWlc1m7dogZ47vKhaL6na7SiaTOjk5eSlwNhqN1Gw27R7i8bi2tra0tLSkQqGg8XhsBm44HM5xzIvmw3WOpQ9e4k0hHWQjZj1AH7BJkjCFUZ1MJur3+3P1QCaTidEm/O5T0qMIdBFVuagPvEFeJGdkrXvjHgWMni/3n5Vkmyip914bXiwWlU6nVSgUzINiQ4Lvzufzc7Jagtn8UD4gutFE21fCgEuvpwgWuXLLy8sqFAomY6rVatrY2FAmk7FJRiaY5x6ly6w5uC4fIKHDabgyNDhBDMD5+bmy2azy+bwFY9LptPr9vjqdjpaXl82YS5qLMPsJ+aYI+6/S3hZHuuh7vIQP2uT+/fvGVyOx+uijj3RwcKAnT54okUioUCgYZw39kslkdPv2ba2urmpjY8N4b5+4wcJC2tXtdhWGoXK5nAUbfcF9SVbAn37Hm0PexhiNx2NTxbDB4GFUq1ULpGYyGUNmQRCYUTo+PtZ0OtXt27eVSCTUbDaNGqCeNehtOBzqs88+0+HhoSSZQod7HA6HJoUk8eRNlApfpCH7Q2q5tram1dVVra+v2+aMfvnk5ETNZtO4Yf6Ot0VS1snJidFHnu/GiPNcUZqDueW9F0kLgZlPsGIz9vEx6TLrUtIc8o56yN4r518Md6vVshgI6qoHDx6YIe52u6rX66rX6+r1ejo6OrLAOmic5LVKpaIwDLW6uqrz83OLe0iXAfyXxueax/tztau43kXBMB8B5mDTYrGozc1N3blzR/l8XpVKxUpAElyQNGeop9Op8Y4+2u11ptLlxPUJIcvLy8rn8y+dg0eKMH8vlUpaXV01xH1wcKB2u612u61mszk3eUEbXiIWDYL6fngTTvwXZayv+u5YLGboK5/PK5/PW+JMPB7XcDhUt9vV4eGhWq2WRqPRS8Flz1kjXeMH+R4BJr6XyD701tLS0lwMwm/ifsGDMNkUMOBRTy0ML/S7vM+f0QjKxPWOuuFegsY9w3X6hoKh2WwqCAIDIRjD0WhkJVJ9neq3NZbRVPlyuWyUEc/PZsUa8glUoFLiTmEYzgUGfUp5lD+/ygtd9P8o/el5c8ZBmo+lRZUo0UBnFNlHAReAL51Oq1KpqFaraXV11bwOVCyZTEaFQsHm1mw2MzBH8FeSUS7IX5GVfiUR+FVUwKJBYafCiMKDlkolbWxsaHV1Vfl8XoVCwY5eYpF5XTHBEnZ8H2j0u7FvPj2X9GxcRuRruJd+4H1N5FgspmKxaJF2jHmr1bJgl+fJ39QAL9r03tTIX3djrNj4oEy2t7dVq9VUrVYtYPzo0SMdHR3p448/tqxIpGSVSsXiGnCOXk7Gd2HY6Tdey2QytsigY5rNpt0nRsfXsEilUsrn80afDAYDAwFkRhK0unv3rr2vUqnY3IvH43NcLoE6klnQn5PhBzAYjUZ6/vy5eS2dTkfdbld/+Zd/qVqtpkKhoKWlJa2urlpyEbJFgn1eDXXdjfEke7ZcLqtSqSibzZqh6XQ66nQ6ZmzYdDBkGDloFWgB4kTRjXIREvYUyKvmH81/1gcPfVDSU2uLvtdvCv5afnOAAiEhrVarGXBEkcOGG4/HzTvs9/tWh4cfb8Dp316v90qq9UsNYvL7q+gDb8B9Iki1WlWlUlG1WlW5XLYH9tFwMroajYZ2dnbUbrfV7XbVbrctAOQpFtwyvztHJ5FPgQZdYnC8p+APb+UzFPnBvYrFYup2u7YDe9rmqsX4OqP8iwpqLWpBENhmRkygVCpZejxR+v39fR0fH0uSqUxY8Jubm8Yrw/1Op1M1Gg21Wi0LHoLovBQMVIrcDSULKhYQOsEjj8T978yF6XRqgVgq7PkiW8jn4DfZmHd2duZosmh2Z7Vatc2FNHqABXOh1+spHo9rf3/f5jm69lKpZNpy+u9toHDmu6cqo8lX5+fnFvehXz0yZaPEUMdiMWWzWW1vb5uXhJyy3+/b+vGxC+nl+A8xJLwtn57vx/EqUIYH4H+PGm6+yzfujzlx//59ra+v68GDByoUClpeXrYNAYCI8SaRDHqE+Blgr1wuGzBA7YYXelX7hRtw79Ys6lz/NxYSaBdjfevWLd26dcuy5EBPTJZ+v6+TkxN9/PHHxj8REICCIfjl9am48tLFwvIuNfdOQItd2AfT4OKhd0DvGHR44Wq1qsFgoM3NTR0fH6vRaOjw8NC0w1ArXvrk+y/aV75PXxXofJsBTK4P91ksFs2tJPuM+MCjR48s0WYymajX62lra0vlclnvvfeeSqWSNjc3dXZ2pn6/rx/+8Ic6ODhQvV43o4r342Ma/kDadDqtcrk8h3pwZ1FNeETvOVXmEUkVmUzGTieH02XjTqVSOjw8VL/fV71e1/HxsT7++GNbxPD1BB6LxaLee+893b17V2F4kbxULBb16NEj1et10xS3Wi0Nh0M9evRIYRha/CAWi6lWqykMQx0eHtrpM4vmynU0T4eh6GIDDYLAgo6sHQy4/z99wQbPBlssFjWZTIwqYL35jTXqUfq5zQ8b5aL3+iBlVLAQ5bqj6yX6fw/QVlZWlM1mzSYVi0XrE5+V6ROFfDDVlxCGWgRcQMshNfRzM9q+dApl0eu+80F0BFAqlYo2Nja0trZmaby4LKPRSM+ePVO9Xtfe3p7V0JhOp+YCE5D0hXC88gSpIdQHO73nqqFQpMv6C2i/T05OtLe3Z6nF2WxWpVLJjEs2mzUjw6Chljk5OTEJERSPl9Nd1V+LJrj0srrnbaJzxmplZUXFYtHkZrjRQXCRsPLkyROrgTwej7WysqKNjQ3TeLP5YSjT6bS+8Y1vqN1ua29vz5J8cN9xL1FD8LzURwHNsJBYFCRdeLDA5zDgSMZIx0dtlEqlrG5Lr9dTs9lUs9nURx99ZMEmxsIHTkulku7cuaO1tTXlcjlJF+n4m5ubFnjb3d1Vq9WyZ/nss88UBIEhvmw2a6n9+/v7hoBfp2r6qzQ2ZJQ/tVrN4kxw3wR3+/2+rSVonyAI1Gg0dHp6amCM2jPFYlF37txRtVq1mjbNZtM2TuZ8VALogZ1vxDqYa9BqnG/JRiJpLiMTI7ro2X3zipFcLmeZwO+9957RSpQCIK7T7XbN6FOBEtqMmjkUO8PmEODEI4N+uap9ZVQovjFQuEXobQmgMImQMeFGttttPX78WAcHB9rf3zd0zXWYDAxY1KBF0bIk0337bDqoEe6VDYGTNmKxmNrtti26IAiMOwf9RRErmwfSN9CIj6S/Ca1yFQce5fKuu4EwQBBIOen38/Nzo7J84GppaUnValWlUsmkaSA9jOnm5qay2ax2d3dNcgcdA89I88oMSpay+Y7HY5sDPnBN84FUvC34clARtEAymTSOntoqjUbDVCUYEZ/UkcvljCJKp9NmoAhO9vt9NZtNdTodk901Gg2VSiU1Go2XikVls1l1Oh0tLS1dqVL4omMKhcJmSiCZuUlOhI9DAE48vYJnwd/H47HRLKVSScPhUMVi0fo9ipa5Hw9Somg8SiNhQ6LcelRVdhXC9/PC2yK8B2yQP7UeT41Ev6g9YY6hcKLYl082w0vE02EzX9S+EgY8iho9dYLhvnfvnra2tgyB12o1m0hHR0d6+vSp/s2/+Tfa2dmZWzB+wXoOzruBPqGHDeL999+3RYhqhNKmjx49Mj4dtYuvNDabzdRqtYznffLkifHBd+/etQHKZDI6PT3VaDRSPp/X+vq6Wq2WHj58qOPjY/X7fSUSCctKW7QTvynKXhTkvK7Gws3lcqpWq9rc3LSxSqfTajab+uyzz7Szs2NSPAzh+vq63nvvvZcy3jjv0EtHP/zwQwsEg57ZdPmcdzs9eiMpgixaUDkUTr/ft82TZJOzszOLS2C8ME7MDXTZnU5HH3zwgbnYvEb50Q8//NAkkGQLk2QCMgVZb29v68/+7M/s5JaTkxP9+Mc/tvlOIP/WrVvGpzK/r7OxVtiMObDBHydG+jvBN0AK1A7Swmw2a/fPeLIGNzc3lUwm1Wg0rJa3NA+0QPdRikWaDyx6ChEbgneC0itKq3iZYXReM7cxrHgiW1tbqtVqyufzVkIA+hOPBI8C/TxzHiNPP0C/QFeR5Voul5XP579aCDw6yRbtrnQ8HBPu+NramvFNyNFarZZ+9KMfaX9/Xzs7O7aAUqmUBUVSqdRcsXnkfigdms2m6Wpxl6luRwACZcIHH3ygO3fuqNFo6KOPPjIj4A9bBYXhziGx4qQVMtiYuHCAuVzOjEM2mzVuHHqCqnwejUcN8qsM9NukUEBWniuFZx4MBtrf3587PiqRSFg9k5WVFTOoLDRJNnYEe4rFoiSpXq/PoT3QHejQByTpE7LyfBAbow8K4p59yj3UBhu0X+gsQDj3XC5nn+HoLPqmUCgYWgNpUWkP45TL5V7i3fl+5uhgMDAE72WMrwp0/VUbHmI+n7cEHp+F2O/3LUEN2SUb0unpqRqNhqlvptOp3TOeC2MMlVitVo1Pbzabtp4YJy82YJ174YFH4mycXiLIhkC2bRQgMA5ch+uDhsk1IdaVzWbn8kigPCkHwGENPBu1ddjIptOpofVkMmk5BlCvBKOQKKYAACAASURBVIqZe4vaV0YHHuW3PJ/KQocbZYfvdrva2dnR48ePbcA96sYFLBQKqtVqZlTR1GYyGcuoCoLAXFcMpjcAGIdaraZ4PG40DUEcBptB5DosQCYShYn8oOGms0OTws0mRb94qVjUiH+ZLQgCm+B4TKC1wWCgw8ND/cVf/IVN5l6vpyAI9M1vftPehxHt9/uW1QfiBeUwJhg41EcYcPS2cNi+jUYjo3Dq9boZHO7n7OxMm5ubWltbU61WM6SN0oLx8417297eVqlUsqDe6empKXFArPDGXoZKUBdFArLEwWCgx48fa3l5WQcHB+Y57O/va2lpyeby5uamer2ejo+P1Ww21Wq1rn1c6WvunTHwZSKgrXwsYTKZWJEqf1CwD/BJl0aUPkJSy9/9YcTeW8ZOeKWJN+K+1grjFuW6/fVYc8wbBArErQB2gC8AIPeJAYdKZWy5LhQsto31PBwONRgMLGfBiyyYO8TbFrWvFIVChyLLq9VqFiwgAwxj9+TJEz169Eh/9md/plarZYECagcPh0N961vf0oMHD3T//n1zW8bjsb7+9a9b4sX5+bkePHig0Wikhw8fql6v62c/+5llQ41GI7Xbbb3zzjsql8tW6pMBXllZUaFQ0Pb2thWx39/f16NHj6wovd91x+OxDg4OtLe3pydPnmh7e1tbW1t69913DcERuCXbjUMN6B82DR99p70KZb+tYKYPwJC0A2rA66DOQyqV0vr6uhl5DoUFIXFveCIgWigWDB2KDBAwtESUx/ZBSrTW1OGWZNIzKsHhRfizG/ECQJ88Mwaegk79fl9BcJExySlAs9lsLknIGxlf88PnAKRSKT148ECpVEpPnjyxzabZbGppaUlf+9rXTInDpoUs9TpbLBaz62ezWfuOMAxNr97r9ey9jGO32zXkTcKaByeS7JkYh2QyqbW1NdswVlZW1O/3dXR0ZAlxzA0/7hhZXxHQS4C9Ogfv1StAGEO8Cx/bYg4QYN/e3jYGAOUbz+wpGk6jh5IjDsAmBRjwcsIwDK3MhE8azGazr4xvfGWKWXkEvrKyMpe2C+eUzWY1m820t7env/iLv9DOzo6Oj48taEQdhkKhoHv37un+/ftWzJ807el0arsnOmIkhvfu3VMikTBa5t69e3OFmJjEuEaFQkG/9Eu/ZPpPEPZ7771nEsGDgwOriEcQjQEbDAZ6/vy5uZpE5f05jbdu3TK64enTp4rH4zagvij+m/T7IsMdBEFc0g8l7YVh+LeCILgn6Q8kVXRxovnfC8Nw/NIHI9dGrQAKx4AfHh6q0WjMZVt6/tBnL3qk5QPF3tPACwIJQpeh0/bVJaMeHvI1b+jYxD0Fg04f/TqoyNMUfHc8HreSrxgNNL/MCVCX31Rms5lpmH3ZU6777rvvKpFI6F/9q3+lMAyNIwZUYMAJqEWf6zoaYIJ+YTxAjtEzJL2+2sds8Gj92DCu0WxmH3j2OnPffH6F31SlSyPtkTnX92oUvtd7+4wv9wgoQDSBfp+aOVwz6g37PvN1wwnOcn8+8InqjHEFxHGdq9qXisD9QPqAASnYuCuFQkH5fN74ZPjuo6Mj01FKF4OHpGd9fV2VSsVQHnIcOEai6h71JRIJC8g8f/5cd+7cMX03vCMV7iSpUqloa2trjrah7oZ0WTBpf3/fJEYEv5AeonDh2SVpbW1tbrKjSkF/zrOyiy/SsEaN9StQ9z+U9LGk/Ivf/ztJ/0MYhn8QBMH/LOm3Jf1PrxtHnzZfLBatL588eWL6ZryjtbU1ra+vS9IcCl3kHtOnROpns5nxlaenp5ai7GmT18kuPcqCf2XT8X/DQMOHc19R4OEzK3kvi5YMUowQHhz1NECpGDwWLx7lN77xDTu2jaAowfFSqWQUo5+D19VAoT5xSpIZVbTb9BFj5Y9RY92ALqPv93JBaINaraZSqaR+v69qtaput6uDgwO7L3TTfB6jyBqTZDV3fGyNMQFwYDcIMiILxVOgHDUZsZubm3O5IZ5XZx6gWIrFYpY9Cx3IvTLnZrPLI9RQpECZ4Nnn83mLpSxqX0oij7QYfcM3VatVra+va21tTRsbG5aFdnh4qJ2dHf3pn/6puZa5XM7Q3fLysv723/7bSiaT6vf7lrWJa4ax8LIgBnI8HqvZbGp7e1vpdFrHx8dzR0Zxdh0V6UajkX75l3/5JX0nZTTv37+vcrms1dVV4wzhBakjjqs1mUz02Wef6eTkRNVqVb/5m785l6CEV4KrSEU7SUbLLEo/flWfv/h9W9J/IOm/lfSfBxdv+Pck/Ucv3vJPJf3XegMD7uVmLIzJZGLp5Sw41CogLYwzKM0rSKJozSdFePfYG/5XGe7oxuCNL0aBRebrofi4w6uuDRrEE2Ou+XRtj9pAqtGEDxp002g00uHhoSHaXq9nenQ8BbzQ62yMqw/s0g8+Pd2PG/0FFSrJdPsgyqjxZvP1SJ5CZFTv83W2SQzzxca4HzjplZWVubkA2mVjYaNlzACIzEtJhrZLpZIVK2Pu+NpF0bmIrDCXy9k8iHqGfiPzNGG0XMRXTka4aJL5hUTpUWppVKtVKyD1+PFjPXr0yGoyS5dHTG1uburXf/3XtbW1ZYEDfzwSCTS40QRa4OZSqdScFIsFjTuMy1uv1/Xzn/9cYRjq/ffftwnHJEex0O/3jSL4wQ9+YCgaJJLL5eZQlSR1u10Nh0P96Z/+qd577z2tr69bqVzcSZJfkE/6JI5FBgbvxk821/5HSf+VpNyL3yuS2mEYolvalbT1ujGNx+M2bnhMJLccHx9bIPb27dtzNcG73a4hElRC9A1IFMOYSqXUbDatBjt6c2SDnvf288w/L2nOGBg2DRAy/C3jR70Kr9/nnrzX6A3LbHZxEAOqJEqkck8YJdQblA1lbKGWkJ390i/9kvr9vn784x+b8djf31cikdCDBw+Uy+XsUOi3wYHz7IwHhoZ+REILfeWfEzWSJKO4+F2SeaJ4Pn4jYJ2GYWiBauY4dFGv17MgMPcFWsXbZg6Alllr3Ctzixo8qIeGw6Hy+byWl5ftSD4fTPRp/mzGAAToNsCJzzL1/UPfMYd8oNyj+WtB4NfBlb7i2nPBKB8Mw+0C+R4cHKjT6VhnjsdjbW1t6datW7pz545J8WazmZXynM1mc9IhAlfwbOys7Oo+Y89HqKFH2ClPT08tIYNdlZ0+GpFH67uysmIFmvxJP54H3d/fN8TvkUuxWLRgDsEhvg9DdVVK9QL0/bckHYVh+KMgCL77Vxiz35H0O5IMfXuEhWQPhCldUEpbW1vmTfgAFovHG0l+uL7PvuP16PhFNyoWrw98MTaS5hAP/YhHwKLEyC9KpvK/e68B/tNzsTSf/eddfGSro9HIEDWG3BsP5ITSpXwTHfF1NigUNkqvqSYZB6PrqzFyTz6A7OklPBKPqn02NX3p+XGfPMQYSpfBbzZEpMN+Hfh54xUwHth5CsTTZKw1xot5gDTSI2eoL54b28W1/VyAUmGuePkrtoRxvS4E/oW50mjjAdi1qBPCz9rampaWljQcDvXJJ5/ok08+MfoCDWa73dZv/dZvaXt7e06JQAJOIpEwKgJji5Tv7OzMdtZYLGbyn/F4bMoCjDcDHo/H9c4776jVaumnP/2pfu3Xfk3J5MWJI14yRAEjTlopFAq6c+eObt++bfVUMOrpdFpPnz61idBsNvXw4UOdnJxYdJ70XdQv7NgkBkQNFm1RMO/F79+R9B8GQfDvS1p+Ma6/L6kYBEHiBQrflrR3xdh9X9L3JSmfz4dsvBibRqOher1uMqnxeKzV1VX9yq/8iumdQd/oqKFfQDD0Nwjs+PhY5+cXJ5ygFuF7vfH0VBJ9Cu/pSyCcn5/bCTls6C+eZ268uYanqehrr4ygfz0Q8DysdKlYoNA/wT0PLJCV+UJa5XLZ5HjHx8dWDIt5/TZUKFEKBUOIocN4R1U2PoEGg8gGg9HzgIV+4TPUtaGP6V82fY/0fUCYfAuMI56W30BB6dw3NoGNwv/w/RRD4/uhbnzBMuaYX29epRKdn/QRm5fPXeB+mBtfWEZ4XVwpjY5lYAhgIJT3FMr5+blOTk7005/+VAcHBzo9PbWym9lsVt/+9rdNluYlYvCulPRst9uGJBgAX+Sf+8DloVOn06kODg4ssLG9va1+v69cLqfZbKZHjx7p5OREX/va11QsFo1moeoYAT7OgGSxkT6PtjYMQyt0j3FptVr6yU9+ovfee08bGxuKx+NW71y6PBWEPqItOjNxwRj8Y0n/+MX4flfSfxmG4X8cBMH/Ienv6sK7+i1Jf/i68QRhIcWSZH3OxCcy73lm5gKLgHngz6L0wd319fU5/TzcZDSZY9H9ERzHEPuFx2eo20JAE0CAF+RzA/z38ZpHbShXQHjei/DJP3w/qNSfaMMiJ+vy2bNn6na7Oj09NdpFkgW93gaFgqQShIiXgoLLZ6ay2UXjGfywebH2QODoo4fD4UvG09NLfjORZB4bnovXj/tNJjrevJf1zfv5ISbivTE2Xe4L441skTXHeuYZGGu8bOYQax4VT3TDYv5cVyLPtXCl/gal+eAliAr6BGPbbrd1cnKiw8NDm9y4Z6lUygKcLIiVlRWL6CaTSetk9NgMKIuaRQePzUTluzDouJNIzAigUlyJnRQ3j0FIJpNaX183DhukQoS+UCjMHbnGQuY6PD/BP1Q15XLZTj9BzeCRwKuM92vaP5L0B0EQ/DeS/lzS//q6D8CVelef+iDSJUXig0CLPAbcTo/A/UZPRb4wDM2Av0p9Eg0IoTpCsRClRdBV+0xHXFgfxFuEwKMoG6PGgl6EtDESxE78Ib5cj3mysbGhw8NDAycExelfdOfX2eg35qxHkRjIaNKUR7yLVDvem/HNSzBBut7gn5+f29r0SJ815j0gvtdLUaXLpCH+71VG/j75F2kroCMa92DueHkidOmieIw0XxbX06y++fns592i9loDfp1cKTftHwTXluxIFmahUFAYhtrZ2dFnn32mvb09m7Cj0cgWGO4zhH82m7VU1nQ6bQk8uN2gCNCRd/+QLFFVED6NQBOLmcQJ6lf7Ax5ms5klPnhDvbOzo93dXd29e3eOf6VMrg+YPn/+3CbrbDbT8+fP1ev1LCORuhkEXTkRBQ+CCeSDOPT9IsMehuEfS/rjF/9/LOnf+TxjDAL3So7BYGD3l8/ndf/+/bnyBNSOILAFlYWX4hc490yfUEbWG3i/mGi8xnN7z8tvmN7QY7R8/MO7uJ6a8YvZu74+yFmtVhfy5MlkUltbW3bYCJ4U7r9HkmRdfvTRR8b30r9seGjWr7PhEfm4BKjVe1XRTRNvatH9+A2TjYC+83EBEC4b1XA4NG8ANA9KLZVKFhPygVev3UfmieElQYkSB14dwzzx6iC+y1M5vM4cZKPx3oifK/SHn6NRrw66CZAJqLiqvQkCvzauNAgCG2kfuKG+Mgc1rK6uqlAoqNvt6vnz53r69Kl6vZ5Nol6vp+985zuWUswkwFWCYwY5g/7I8OSUC09B4C6y4ODSJKlcLlvdh9PTU+XzeVMskGbLQORyOb377rumk8VQcOTbs2fPzGANh0OTKVIPm7rgcPSUTG232/rpT3+q2WxmtRjK5bKky8p6GHCfoblImXLdDYPkjRyGEk+Jk9b9ZPU0AcZAutQSs6lh9EBLZLhdFbCledSEASerD60y1/GBYObRZDJ5iX/0aMsjvEUbI/3COLCYvVpBkh2vBSURNWxs7F6S6IOdPknmOpsfV8bHyyt5j+833xd+w+Oe8YBY+5LmAn8ekUYpLgw5/cbmXygU1G63NRgMLAPSb9jcg5flQdUBxLh/7pG0eF6Pxj4YI17z88DnlniKkH6g8X14pl5a6LO9v1AQ8zq5Ut+8K+ZLkFLAJQguapM0m0212+25nY2Dbmu1mmWv+clDx3iX1i8KSmDi6oL+vHSJBCH4MDTbICPpUqrkU2M9VcAAgyzH47H29vZsAuFis+MyyZrNpp48efJS4k6r1VKj0bDrkblWKpXUbDY1Go2Mk/TBuy9Ap7xR8/QTG6I/aTyTyeiDDz5QtVpVIpGwiVkulw09cnIPgUqKH4GUfCq7X9geCTP+/oe5RuIP9auJfRBs5oAJaDsWJJsk3hpxk7OzMzMAHll5BB7dPHzwi7m3srKiO3fu6PT01GqHADyYhxgeuFZovW63O5eH4KmM4BpUY17CCQCCr462Rf3ug5a+/G/UWHuvJBof8T8EKv1GzufpOzZd+g5gI80fD8fYUeeF8YOTZ5yjtBRj6QOOvB6NryzaiPwcYbMgNoTNYDMOw4u0fH9SV7R9ER345+ZKffOIiqwjMsvgBPf39y0VOwgCe9hbt27pnXfeUa1Ws8Xud3Z+ksmkUSg+WPT8+XPL2AJZwKuTCl6tVm0hjsdjK0PqJYJhGKrb7VowkkxLnokB7Pf7FhhDz5vL5XTnzh2rOsY14PTH47GePn2q4XBox7V1Oh3t7OxoOp3aWYyxWEybm5vGh+NaR9HL2zTiQXAphZI0x+fSX17X7Q2ANwzdbledTsc+T8lVXyUSNzdqKP0C8sbTPzuG3BsSz53yXp/dGs10jXLdoDTuRZo/7dwbo/F4bM9H8AoAQS0Z5izXhvpDEQVYgRsmgzXKNeuaMmwxdICZRfJIr6yJom3fr2wI0fFZ1FeeK4eiY4PlWdkgPBiE4vCp/1wbJAv1AZCgb2lo1ZHpRnloHw/wG06UE/djFd3ceE6fAAR1B5gE3HrQGG2fy4B/Ua406uL5SD0USrlcVix2cVbks2fPLFmF5Irl5WV961vfsuh+Mpm0o7agYpLJpGq1mi3YWCxmx2v1ej2r9xyLxYwf99y4lxcxyJzhB8pOJBJ6//33rbIdR2aR0YWiIRaLmUHlZBLOODw8PJR04X5x30Sdu92u0um0/vzP/9wWO69LF4jwnXfesVTfW7du2eLnCDGf3PM26RQMuE+C8FmGIIloVmmlUpF0MZEbjYb6/b6V9aX4FSn6nOLCQmIBRUsKeN4/GkwCmXltuuc1Jc1lTXoDwjUxlhgij/A8pcMi9K+dnZ2pXq/bpoS3yYlN1WrVvDmSgE5OTgzVobhgbAEUrANnEK9FNYbBjWbILpLmeRoKo0oA0BvqaBDbG/goovX0BJuHz2iMomBPyXl6y4sKUITwN09d+JgGfcwzRGWi0T6IBtIx5L5fPKCKNu7d34t/9qval5KJ6TkkjKU/hYKauo1Gw4IYoLtEImF1c/mdBUzyCO4WhtbLgliQoBefcCLJApRQKXQ4VAfcJ+/t9/vqdDqq1+tmxOC5POdKhTYvkeS+W62WVSIkSFmtVtXpdObScaFxTk9PdXR0pFqtZu/P5/MaDAYWTESJE1VavK0xZZIzDl5R4TcRgkyJRMKQMAbfG01oGM+FYyy9DthvUh5R87s3AshMqXnB5g4Kw1Cx+RKwJl5BtqantTCkSDyjC9mjtNFopFarZeMRLXnq3WvmNQYH4+VpBu/hRDjwa1GNEZ8iwBc14mEYWh13v/H5wmVeP+4Nno9tRL0mKDmfYOMD3R4U4FGxdrynwLW5jpccevFC1CBDmVKvxM9dr3fnful/nt+Pjzfi9BOAJ6rY8Qos5hDKqaval1rMCgMOjYACgfKL6L7pcCY2AzedXh6cEIahBSfpsFu3btnGQM1pOoUTU+Bq4SdJX0cqyAD4TEAWDZ5Dq9XSo0ePVKlUjA4JgsBqUB8fH9vhxXfv3rXId61W089//nPt7OxoY2NjbtetVCoaDoe6ffu2PvvsMwveTKcX5Sl3dna0trZmBiefz2s0GhmXjGH0+te32Tyv53lev3HwHgwlWmAOqojyibzGs2PwPRqK8o0e0fE3XqdUqS8nGoaXOnVPaZCXwKInGO3nLrV1QPu+oJTnO6XLglx4YfQV89XTAdwvRikqd6Nvryi/e22qsUqlMme0GT8vJ/SIkzXp55w3eNK8zNCjaD8/eJ90WdKCcfDUmf8sdIOXa0avi2GEhvEUS/Q+MPieJqP5747SdNL8CUHR//M+1iPPElVCeYD6lUHg0UFkQWUyGeOeY7HLU+Xr9brtrrPZTLlczioAMqAEHkFIu7u7ZtRIbqAmCQuTcrWJREJHR0d2rJlHdtvb27aRPH361IKsGxsbczycJEu2oDExBoOBDg4OrCbI0dGRlcUFcd+9e1e5XE5/8id/Yvr3dDptSO0b3/iGhsOh9vf3dXJyYhRNv983w+5d8e3tbZ2cnBiCJVgbpa+uszGWUAaUCcD9JNGEoFFUkufdUq7DtbzH440xGyuL0i8OEl1OTk4MDaKdR5IXBBfySwLFGPXZbGbzhFrMOzs7Ojk5MdkjfelVFWT84g2x2TCnfDVFjCBo9fDw8CU3nr7xNJTnoPF0MC4up+HaVGP3798PfRamN6D+NR9YjSZIIbPDK/WGk82BcYOX5rNQi3yG7/FZi8wL6meD2El+wSsLgmBOd+/nU3RM+D/AEK9euqTJ/IbCXKT5TYyNzRto733hifpsat/PUUlttH1pCJwdEQoFJC1dLEAKO7HAz8/PjQuFziAA5usZcA3vluLOsKsWCoW5ZBnpsi40HQy90uv11Gg0DE3gztLBuVxO5XJZm5ub5nr7FFrkikjXmJxwwSAw74Hw3SDqjY0N06ZHk3xWVlbU7Xat4A5aeBKholzd22gemXnu0LvEXhIIcmTB+2uwoFn4LEY8MM95RukS/iWghrxSujxAmVhDKpWaCw75Bec3FDweX5zKzy82KV6LoqlF/cT8otZKtA89EmUOsQn7DWtR4D68RtWYp8b8vWBIGTsfGPbryaspouMURci+Txl/T20wF7wxi6p5oJ082pZkcwlDGkX5gMTovfpx4XuiXqJ/Jv7vqTsPOqBuo/fAd3N/ABM2yq8MAo9yYHDTSOK40V6vZ0ekSZclU6EKfH1iMt3gvEE1LE4mOok9y8vLWltbM54NqmM4HNrhEOhdkXa1223joryrHwSBKpXK3ObD5iJdDibuN9/DIKInn81m+uCDD8zgUj98MBhoe3tbd+/elSR9/PHHVl4zHo/bad9HR0cWCKN2BmcSEpx92w0DTf/7xeUX62x2UWSMBS9dLjDGmv+zSUMLwVP7RBJoIsYjCAKjj/jBYLL5QUtQVgGjxAJiERG/4Mg1PBqfQxAEgXllbOxkAXN90CRgBQ/BGztvLD2nzdynZjzzDHQO/eI3syva51aN+U1FugzwRjfoqAHH2Hogg3H01IH/Ho+8Qcl8tzfeaKT9BgZ9wrqN0it4df79PpayiCKJzu1FfH004Br9WdRYF/569IHny6OJZFe1LyWIyWT1XCNF6QlenpycaDwem1s1mUyMO8Y1Rd4H4oQn7XQ6VrWP0+Mnk4ltAPfu3dP29rYdl4ZBAb0Nh0N1Oh1DWwSOMBR+MVcqFeVyOQteRtHEbDYz3rNUKs0Vbur1eobo33//ffMUYrEL2VSn09GzZ8+USl0cynz//n0dHBwYbYKG+ZNPPlGtVrNjytbW1jQcDtVoNCzVH/T0tsbUo2ePZr0Bh87xUkGfuBDldUGcUC+LgmE0zyWC2qPKguFwqHa7bYaAhYGx9kacZCISfoiVMLYYWcYTrjZqSKOIHNd8Edrzmwv35mWrqHK8l7iIj3Xf/cf6gqoxqCy8DzYfQBKeBOn99D9Ax5dX8IjbG3WfdYmgwccSPDpmnLwXRsyHzUW6TA4CzTM2rEmfOBYEgWn/USWB2CUZ9cKm6cGH36T48RseY0hAnqQt6osjoUV0gG3x9Mur2pdCoTAxmKxeh+kz5bxLFYahFVhvt9uaTqcWHSdyS1IF6JmKf2EYWn3uMAxNlkjAFMNwenpqfDq1p72aQpKhebI9Z7OZ0R9XoSC4LAaNRJ6TkxMLvPoTqAnqMVFQoRSLRR0dHc3xZahYkB2yyP1p5VFu9W00L9nz2aB8v3Sx8XFaNwuBjdwfSoFLzHU5Nsy7m9J84gyLE/SCS+0NwXA4tAMmbt26Nadbp2Ki38g5LYmxPj09taQPlBG+SFm0poZXrHiDg8LBL1I+42unsEGzCaKOwgBiJD3l8jYa/eENqK/G5zNDuR+PxPk3QvXY5uaT4aRLLpzmYw78gNI9xcF3Moe4vufKffNBTJCxp+6inLTnwb1+21/fgw8f1CVGh71BhcI448X4g0DwOl61Zr+UICbICmMGWmKRsZtHXRKOSONEGhaCl30RMOn3+7arhmFo/HEqlVKr1Zo70ZzNg8y25eVlHR4emjvsd8TRaKSjoyN1Oh27j7W1NTPgUfcJpEbwlEywTCajTz75RCcnJxoOh1pdXTUZJUFAqBjqPxcKhTnagNgAlNPKyopVZeQ7ogGot2XApXmDxYKARjg8PDSajMA1sQAUHZ6jpOwBmzap5B5lYkAwAh7tgmKhNjyiHgwGphhh4fgDHPAUOHm91+tZkJ1CVBTp90HPKIUQRd7cM2MAt+9PW+IZoWqQso3HY9PCcx0feH1bDePN97GRkbpODRJfNpgyFP60oEqlMod6pcszXdk0MaieX+cIOg5voBol8lnGAtoMBO43Ca9mwkjzd59cRj6HlxFiP5h3PJ9H2Xzeb0LT6XSu/AYHnPM55LE+ZgMw5XQv5sBXxoD7nQo3lyxMDCfKAFwNn4jzzjvv6L333rOEFlw3kKY/U88bdEmq1Wrq9/s6PDy0HRvlAOcSrq6uWvU/sgDPzs7sDEKQN4ue1F7UANAVkowuqVQqVm0QCZxHFBiIXq+nQqFgelfpgrv7jd/4De3t7aler+vTTz81OSTeAtehANbt27ctNR1ZIxPkVRld1zWuvoVhaHGGs7Mz87qiMi74Uo8ovXLFF7vn/SwWamT7LDs2Up8DgLHHiHM/njbzlIkkG9vRaGTp/FH339NEfvFGg3Xec/DBUpA8m403Orj6XAOvkY3Kb2Bvo+EdeHrCf2cUO7hPGAAAIABJREFUHXpUTZ96z5oN2/O9vNcHaKV5mgwj7+MJBCyRoTK/MeDe6HqEG0XleDw+yI7CBzTug7jcmweWPnjNj7+vaLCe+/feoe9rDovw7MNV7UujUOD7fB0SAlCe6OffYrE4pz6BA2fn9zwrWW0YcF6XZBxss9m0SoAEEykgBS9NUaler2cucqfTMde62+1qbW1NZ2dnarVahsiDILDqcFAjURVK1P33CwPKRbqYfNRFTyaTdgYoQTAmIpsedZMpzetLsy7ijq+z+UxH0M3t27d1584dbW1tzQWfQVB+kXlFBSiceIGfCz749C//5b/UwcGBvve975kXxLOSlIUcjNIDYXiRFct8GI1G6nQ6SiQSc94QRobn8UiaDQe6LggCZTIZ49OpdePnNvON/ANP0XDPvBd6gI1rMplY4SYMvNfbL+LAr6MBkpiznmaieYqE39ksmduMe9SIe+rDB+t82QD6lLWF5wLdSh0g7iu6sWL8MaJ4sb1ezzxWJIgcIIM3xvhxH4yJj5cwFz1PDqL2ih1vvD3rIF1SLmTfImN93br9hVMoPuDl02NZWD75BKQVj1+cJclD++i0P9SUIkA+/ZoO8Blw9XrdJHjQMhx15iPVuIq40MvLy+p2u1YxkF221+tZsg7IfmNjQ4lEwg45wKXyyMMPqM/UIojJJlIul624VrFY1Hg81uHhofVNEAS20VDBED2yLwKFEXwbjWszIVmoJFKBhH22mS+T6Q0R12PRe5ke6KfX6+nk5ESNRsM8HC9B9PwhShSPin1689LSkqrVqvGR0HfecIA+PU3G2DEGvI9yB75uC7/jEYVhaEE/Mjx5bjZwrs8zQRf6e/C01XU3QI0PhFPl0xtMjK/3eKP8P3p+5jfgDWPIdSRZ/RdPcTFOnialDj7352MJfoPxKhOuSf/FYrE5ZRfzgxgFVBnzgiA0oAJPwJ8IxL1E9eZhGM7FpbgO90jsC7rqTTzmL0WF4g04vCgdBE3hsyBjsYuCTagVMMjxeFzvv/++cagY22w2q1qtptXVVeORDw4OrEM2NzeVz+eNz5QuFtfXvva1OXdrd3dX4/HY6gZzMsrdu3dtEj99+tQQFegXg41b7PlK6QLV+KxR+FY4wUQiYb+T1HR6eqr79+9b0Ozg4MAWcCqVMn7y+PhYtVrN1D3ZbFbtdnsuPfdtNa+KkGTUFxspqexw8/DjUfWHdFkXGdrC0wpBEOjTTz/Vj370I6uJjRGnXg5obzKZWL1t+iBaMGp1dVUbGxt6+vSpVb+MxWJWD57NnI2djRfNPd4ZqPrZs2fa2tqaC8ZKF5z3+vq6MpmM+v2+9vf3NRgMrBAZiBUPDl0/SgtqpXhE6KmB625sLp1Ox76Lee7pCjYagALv9XQGrzE/2MxAvP5ZfLKO/xyUmPd8MOJ+A2S+eLDEhovR5bvYDOhvH3j1fcwaBpUz5uRy+GxuDxSYr2zE/lAK1oAko5x8ljC001eGQvEyIh6KDqXTojfM//3kQPNNEg+TgB2VBczAMUgs8FwuZwaBMxHha/P5vF0bFFupVIybomoik5lAzu7urikEcB99tBlDwGTGBfZogOftdDp2dFaz2ZQkOyUG17xcLqvRaFhglskDf4bxiFZwe1s0ikdb3rX0GlxQBbx4dJH4AKCf6Iyjp1cajYZ++tOfKp/PWxkBNnFQPv3sNdcYBhYJ7jfggftbWlqygCHGwBtY6fKAXF9zB0SI51Eqlez7fMMDicViRlGw4H2fLBovj7z9+657bCeTiXZ2dnR8fDxnEKVLmR7ImLgNCXP+3pgHgAoK1yEiIFi8s7Nj1/biAmIB9DdUTrvdNp7ZSzhBzrzfx1VYB8wHBALQsyB/T8WxeSBh5vxbMrCxW9lsds5DlzSXjBiLxeYSybB7rA3Wrldnva59aTrwaH0HH6Ty75Mu9bFeYQJNgJQLl4bFBLrziwA+L51OW2CP6DAUxe3bty3l2ke5O52Oer2elpaWtLq6apMsDEPt7+/r6dOnNjAMspdQ+SCVDwxFkcN0OlWr1bLyte122w5DYNHDi5MhioGj1sZ0OrWgLpuZN4Zvc2z9/fgov5dI+QL1PujF+xm/qDTOG8/j42P97Gc/07e+9S2rmXx+fnHwhUeIoCMMNh4S97K3t6d2u62joyMLIMfjF4Wp7t69aygd7tdvKMRf+Awo3OcmYLg9vcRmjrbdV4+EsonGBHzzgc63GcScTqdqt9tznir3D3L03H00C9oHc6Hy/I9XcmDEWOv+OTGAHvxEY0a+j6JBXtoiJRbPhXfuJYz++7kvvB3yNTz9wrz152nyHWwIUCje3tFXUCgABS9zvKp9aTJC/mUQPU/F637XByVJF3TIu+++axMBY57JZEy/TSYi8q+trS0zsKTpg3h8IKnb7aparerrX/+6nXqzvr6uer1uapGzszPlcjltbm7agGUyGT1+/NgOC5AuZWKoYvwp9/CeyP0KhYKJ+Hd3d02Fc/v2baMR2PlXVla0urqqx48fG/pgUlOONZVKWc0Vf9yZn9DX2fxm7MfRlyNlUjcaDUmXGZgsfjY5X8FOusza85udpLmNsFgs6uzsTHt7e3OBQDYv5h4L5+DgQP1+X7u7uwrD0EoYsPHiJoMu2eRJu4YywNPjvlDOcD0MMP0OCCGovrS0pK2tLQtMY5Q8789m02w21Ww259aGR5nX3aAIPRJkLAEHHO5NwF6SlS8AnTNnPU8OOJlMJjo6OjIPCu4fWs1vaBhvqAY/DjRvL9gAvTpIuozF+eC+Hw/Gi+syjr4aJAeP1Ot16wf6Bu8iHo9bXXu+B2DCfXpwQHwBSgmbGAUyvn1pqfTeTfH0CdwQN82OSXYkpVkxdhhh746gTmGizWYzKx6VTqf16NGjOTQIkqfBS3a7XZt8KBrglaF0WKij0Uirq6s24Z48eaJMJmMnuqDplWRytW63a1LKeDw+d8yXL1AlyQI5TEKMujRfh5pJDpplAWEQ3qYSJXptjJdHkRgkj2ow2F4Hvah5GiWTyahWq80VAJM0V4aU63m0yD3AMZLVi7rHB5CYV+i0MZZck03Hyx/ZlD1tdtXzgDS5FvPX01AsZuYrSNEH6zzSvc7mEbhHkD7NncSpqCpF0twmRDkJDt9mTcP980z0J+NMoNfLGKMlLQAmIGPWY5SaxKD7zZS1wboBEMXj8ZeKhTEObOTMoVgspmazOUcJcy9sbh7NR2WH/rm8/DCa4r+ofSkUiv9Xuqw14DlQH8FnsMk2BI0nk0mbHETofXYYnc2igjM/OTmxwAyogN0S408hfRA0qf5+Akgyyd54PFatVlOn01Gr1dLx8fHcPXoUygA1m00rQiXJUEg8HreDkfP5/Fy9DwbfFwpCHcHffWKEd1ffpvH2wTQvKyPo5b8beoN7xDOCCvHqGgyFJFMySNLf/Jt/U9/5znds4bLwUez4wKinsqDCDg4O1Ol0dOvWLdVqNd27d88W8A9+8AOdnZ3p2bNnFnTc3Nw01QyGRprPvvP8MIaOzUO6lNuxOXvDS9ILR4MR5Gbc0H8zn32jz697fM/Pz3V8fDxXi5w1g4ElJuORLs8K5QCl6LOYoZ8mk4mppajV7jOfvXLL0yfegLOu+CwHgtA3jBk2hfXgAaMkAxY+xd1vUr6kMd8FZedr46Ago/Kmj8chyvAqHX/f2Dn+759hUftS64HTeJCotJBFTIZUGIaGarvdrkajkarVqhXUT6VS2tjYsPf4gBeoKZvN6td//dftqLbZbGaa8UePHlnwEAojHo/r6OhIa2trKhaLWl9ft4FmoXrFR7PZVCp1cYgvSUl7e3tz0kYyJ3/yk5/om9/8pgqFgo6OjszYPnjwwAKPDLR3vzD4Hln7oJ+f2HCPr0KC19VAFdLlxtvpdFQsFucQB5wp//ox9wEw7tfz4SB4krC8zM9TGRgc5gDJGWTFUWd+e3vb6tl4T2o4HJp7vLa2ZgvXc6aMl4/V0A8YDJ+d6Tckxg0jEo2F+AA8n8OweGPpufW3MZ7ejWdNch++xkksFrN14VUbeA2Aln6/b2OF5+GLwXkgAAXH+wFuoGtvuMkIpe4RfHo07gTqJ8cgioYHg4EFVz14ACjyvIwvgWgMLpsU3grPB4jI5/NzGne8DWwJ/QLw4Fmvar9wAw5i8byWRzFePuaVG61WyzoQCSABP5+t51UoTCRUIQzU8vKyqtWqBSkpEIRxJfGAQSWRBzlXvV63QkwYcDh4jCaJNV66hK776OhIu7u7ms1mOjo6UjweN4TH93G+pqS5OsssKu7TqytYVD7wA/KnL98GUosqhzz3+OzZszlFiJeIYbTh6xkHuGgMOVmtXLPX65nRAGXjvXQ6HbsuZYYlqd1uq9Fo2MbNRvv1r3/d0DJc+Ne//nUdHR3pT/7kTxSGoWq1mqkl/Kk81WpVtVptbjMivkEDCaJQkuaP5ZJkXlrUsNNHzNtcLmdJQ77vo2voOseVgDiNuRzNJMQYeV7eZykTm4FC4bm94sQHKqN0K/PeH6yBAWd9Y8T9BuGb1/5Lsr71Nmk4HJrt8GuFMY9Sv/69zEM2PUoK+IMm/Jz3Igv61K/XRRRptH1pCNzvet7gMGmjBrzT6Rhq4m9w1eyy0iVSgJtmZ4Q7xEWKVj3DlQN5JxKJueACaoPT01PV63UNBgPFYpdFqqrVqjY3N41S8ZPcH+eG7LDf7ysILg4qPj8/18rKiilhvIIF9AgCA9VgwP0zMTlono7ysYa3NZ5+Q8EQUZPm6OjI6mLwPBSpKpVKxkPiYtO/UA7Rmi7NZlMnJyc2RwqFghn+drut8/NzlUolc5fRDOOe+00hqvSA8nrw4IHi8bgePnyo8Xiscrk8JwtDaoqhIIDe7XYtd8B/j3SxGPEAUJ8gDwUE+CqJaNaRzkJZ+H5/W4FpDAtUEIcmcMgxY0yfEEMgoYV15zltPGNJKpfLpqVnHP1cwmhDbbEeoSvy+bzG47EVc/NrErUHGzP3SRAUxQeeLh4A3DXHEwZBYLI+f3+MOUhfks0HNOFsZP5YQJRQjLMP2BMj8+fx4ulf1V5rwIMguCXpf5e0JimU9P0wDH8/CIKypH8u6a6kp5K+F4Zh600mhXTpKrGgPCJhYadSKRu4druthw8fSpLW19fnIvGgrWKxaB1OQg+qAF8O8+joyF4vFAo20Hfu3FGtVjN5IRmboOHJ5LJULQX+C4XCXDo/QbW1tTVVq1VLjQW9BUGgUqmkDz74QH/0R39k/P4Pf/hD6wM2oOXlZZXLZaN4er2eWq2W9vb2dHR0ZBOSCeGzT2meX/aT8LpbVDbGOKOvplCPDzAHQWBGHaqMADXxAxKhCCjS+v2+9vb27PlQQ4DC2ezxSrgmmx68azQmA6pPJBLa3t5Ws9nUzs6OcrmL4yX5PMlWnqes1+umrsCdrlQqtti9Lr3ValkOAnMXI8lmzncFQaDxePxSMSjv3r8tegwA4A25Bwqel/ald9l0/GYHmAG4Ybw8KuZ5eA0KipgGfe0DoyhOGBcfGPdeAvPHUxiU3vA0lufT6X/uiY0o6inRV8lkcq6kgqdt8D69HNVz816RxXs9IFvU3gSBn0v6L8Iw/HEQBDlJPwqC4P+V9Pcl/eswDH8vCILflfS7uiga/8rGruIjr+zcoEwqgXmtqCTt7+9raWlJ9+/fnyvSxHvG47Hq9bp1JoFAjBoogRoU1CiJGjkQNLVLSNhhQEBduIUg4EajMadcYTGWSiWrMJZIJAwJ1mq1uWAM/cBOTvYdemHK3B4dHanb7ZpRKxaL9qxeTROdFFHX7Dob4+pVRGEYmsvPAczcC3wgfb2/v69Wq6VGo6EwDA11gzj9BuEXM/VnpAsEs7q6quXlZfX7fXW7XctC7ff7qtfrWltb0507d/T06dOFC5M+4/+bm5t68OCBDg4OdHR0pM3NTeVyOVWrVavPg8SUhBcoPYwTrjnewWw2M+4cKRr3SpVMUBgBbJKU6B+/8bwtrwoKzm8sJCgR9KcQnK9GiBIEeSclKzCcXhIcDXAzjzB6Pp7g4yv0G6U0oDOZW56SoXn6AsPKWkSgAIXnK1JiF6Kcv+f+fVZquVxWLBazzFzsAt9JLRYOswGNI43k0HY2Og9cou21BjwMwwNJBy/+3wuC4GNdnGj9dyR998Xb/qkuCse/1oD7gfIG3Gds+SAJHRUEF0XX6/W66vW6DYwPnICcGXRcN7Sl0vxRVHBaJHZIsspwyWTSilx5zaokS6wJgkBHR0eGlqiBEYahcrmcSqWS6V8xpP6Yr0qlYiUn4Q4ZYBaPd6lns4tj1FqtltVlwK1lImA4aKAFz4G/eP3aPCvv7nk6TLrkHX0gByNPzIBNFeQMvcK1Md4+QOvd3ul0asWp2OxYEN6997QHrnWUj+baICUyMqlz4+uY83xQYqhnMHjof0GLpKVHg8qLkCrP79EotIv08uHAbyOQSRDQ895eogddBLhBPYFaCEmnD76CmqFXoEwxWDyT98x9LMADAOaEB3ogb7/eyb9gjiwtLc3FYuhLT2dwfZ8sFM1N8MCCTQvu3Y8va5vnxptPp9PWX36uYAtB4K/aoD8XBx4EwV1JH0r6gaS1F8Zdkg51YQjeqGG8oTROT0/tgUiCQNnR6XTMfYTv+vjjj20nJXAhae7MQnSc1BQBgeKuMiG9rpSCV9zD9va2NjY2tLGxoU8//dQCqSw0qBk06v60FNykTCZjBheJIAhse3tbjx490u7urj7++GO1222NRiNlMhndv39fW1tbSqVSVkWv1Wppd3dXOzs76vV62tjYsEOeyR71fCuTyZ/k4ibWtXpW0By+hoOkudrmIKRCoaClpYuzSfv9vp48eaJms2lGEA9Gkh1ocH5+rlwuZ8YZzht6BITa7Xbn6usgCS0Wi/rmN79pix1XnnlEHAV+HIqMBX7v3j2NRiN9+umnGgwGWl1d1XR6Uae6Xq9bFUM2iPX1ddVqNQMSnI60u7trmcNsIq1Wy/oN+oWNzAfgnz9/rp///Odm0LzO3Hty19X4Hq9vBvzAE7MmfPW96XRqsl2C6/QvSXTQWWEYzgEUNni8LdapdLmx8j5KAvtgpc+KxRjS3xhkaDmQOBsD8RZvE6BZfPO8tI+t8QMAjFJnXhrI6UPo3Kkeiu2QLunPawliBkGQlfR/SfrPwjDsRtyeMAiChbMnCILfkfQ70deZBEiM2HF9xJa6JNSKYCfi/UyOer1ugUk+i76bgfSTwWdgsaN7/bRHa7j677//vk1UFn+/35+LJnv6xCMvNiGyu7wGGnmbj5B3Oh09fPhQOzs7ev78ufH0vV5Pu7u7Gg6HVqaVbFF2fQKmUFTIkaCIXODz2jwrH5B24y7pcvJ6uRuoyntgLErvZnMNxhVvC9RCedbRaGRGEONH//rMSI+KGHOPurgvFp/3/kBCq6urisUuMna5FrQJ5XspA0rmLN/D3GMu4MXBxXs0yDj5BJ5ms2m16T3qftsIHAPrZXQE9gkg4lky33hm6A2a91T8fWPgMKRRFMt3+xZVw7DhlEolffe737X7YCx3d3fVbrf1ySefmO0g4EjDDvjAI1QYFCdj49Uo5CHgKUH7oHX3CYZ+A6I/kLFCM6Keex1F9kYGPAiCpC6M9z8Lw/D/fvFyPQiCjTAMD4Ig2JB0tOizYRh+X9L3XzywzTIvN/J8Fzs+cjzPpzLJMRgsrG63axxxuVy2z0BFIMT3nROdBD6wwQ7Ibkp6rEfWGBNcXYJn3CeTB7SBe8WCZhBBCbiDLHB/0gnaUQxXJpPRxsaGVVVEfsjnoZR8Yg1GCQ8iMr539QU9K2/AvXvPRCTjEdQ5nU7NQ/KyMMaYAlTT6dSoIYJ5zWbTDm8ulUo2F6jnTs12pJlsxi+e1RA4xtNzjEFwUY6YDcAvUjT6g8FAOzs7FhN59913VS6XrbY0nsXJyYnRRCR7cdbpcDjU2tqaEomEBWCZbyBDNnc448PDQ+3u7s5pz7lnv0FeZwPNSjKqQJLFhTjJCC+acYTCYgPyMSh/39w71/evM4+YPx6VRwOHfCaTyahUKunBgwdz8kzu6/Dw0LwY1inIGZsEsOBzKKR8wNZTXtLLWb68htFn/XulFtfzngTeoPRy6ZFF7U1UKIEuTrD+OAzD/9796f+R9FuSfu/Fv3/4umv5BodGfRFQGPQJnCkcGogbzTDvCcPQJtPJyYmq1aq5bHBuXo0Qj8fnKhBSzc7LwSaTiSUOxeNxC4ImEglDg3DP6XRajUbD6pf4e8Z1huuLBiP8exOJxJwixhsWPpvNZlWpVCzAifxK0lxNaThagiJMDrJYI4v/C3tWhUJhbpJKl8lZoJyf/exnun37tlEPpK+DRGk+psHi9IdAg/qow84CPzw8NI8OmozrouGHwmIc4/H4XD1mDAbonBoynv/0maLVatUUI9AoHLrgDXAqlbL7oRAaMlDiAxgQygL4A5T7/b6Oj48tCcbzxd4LeBuNTZTn93QjiTNovX0mKh42GzFetA/2wU37WBTjw3tjsdhcejk6bbxNkmnojw8//FCrq6uGevmuWCymSqVi/DzGNLp+sAuz2cwqDWK0md+e5vDeGx46f/PqHBgGH9Phd1A4+RKALmIO3rONtjdB4N+R9Pck/WUQBD958do/0YXh/hdBEPy2pGeSvveGc2LObWIh4oIh/cNIr6ysvJRO64MLfhGen5/r4OBAo9FIa2trNkBw0ezc6IRBBPyUSiVDQPBwLBDv+rGw0+m0neRxfn5uGxFlSXlWjCjNy6E8lYMOeG1tzWRuPiMMFI2B9xp6dn4WuKctMIK+Toh0fZ7VxsZG6BG43wTwHOB+0e76TEnQGmNKv3sJGzENUB9BQU878f1IKvmbT+ryyAlUDcKTLisF8rlFQTFQICqhvb09M1Tcmx9rNnvG2Nc3kWR8fxiGBj68umo4vDiMGerFS9DeZvO8rnSZUEM/+HXo0WLUA/PGFG8YI8hmfVXzZREIIOOBsDYY2yAIzDNjvOgvr9Xm6ETqvrNps+F4++TXC9fxmyVzlcCkLxOBAfdyUP9DYzNZlNTIOFzV3kSF8v9Jumqm/I3Xff4V150LZMJrs7MixQKd8hmvJWayg9SSyaShYHZzr51lMPy5h7zOTo7hYLA8B0VAicAGfDgUSz6ft4MFfDnTaEU8P0E810Xgdn193dC91yr7hQEnzOfpFxC2n1ggcHZ16Xo9K78Y8Ra41zAMLasRlMX5ksgqQRoEyKIS0E6no0ajYfz28fGxPXO5XLaA83A41MHBgRkVfyydp6lY6F5W6Tly/sUrI8GCcUskEkaXSBcJKYVCwaoW7uzs2Hs3Nzc1mUz07NkzQ/JIPxuNhj03c5W+ZFwlqdVq6ZNPPjE+2RssH2t4GyicTZH78xu1N/CAEZ6RNcOYegrC1y3y9KW/Js1rqLEV1JLJZrO2abIZFotFy47l+xhnqh3+6q/+qh4+fGglhOHDyRGhL5k/UfshXZ5AxRoGYIDA+VvU6/DlIjwlTPN9Cb3zRRH4tTd/07gQBEJYvIPBwJAjulNJxoEy+VmIIKLT01Orzw0vWa1WJV3WC/EIWJqvToc+FZkbky2dTpuiAfex0+moXC5bMSQqJXa7XfX7fcsWBH0lEglD7GEYmmoCxQHG+9atW3O1QXy/8VkmBUET0pZJFsLoQCX5gx1etGv1rKII3MusJpOJqY04QccH87w8z/OgbEpwxvzuvRlPQxE48wvEb1psMATnPKXFQsHwxGKxuYxaPBq/wbNRgeIxYH7jZ7MnS9BTZhi10WhkgIM+wWh5r8PTJ35O0P/XbcC5dw8AvOGJBvF8fAHPhWdkg/dzBTTrx4X5vQiV0/egbPIoSBTz9CBzyQXt5zw86CwyZWezC4lu8/9v71xj48zO+/4/w5vEO4c3kVzJWmnXwK69gOtLY2ALIw0aw02DpgWCoGnhtmha9EMNpEiBJs2noEEAF+gtH4q0aVLABVo4RpugRrxuY8QxsLCBhe1dX+rd7VrySqQkUsPLcHjRhSLn9MPwd+Y/R0OtLhySit8HICSSw/c973vOeS7/5/88Z20tOZR50p11wPV97B6J4Fjl+8HzcrnBy6NNxsvXQXIsCpwJxAOnsAZKHiHu2NhYCysFjLNarSaoBGYHnvbMzIykJjeYU+Y5vHhwcLDF2+PlAuewgVB6p0+f1vT0tMbHx1N0cPPmTdVqtdTREHyLroXb29u6dOlSwnNRnCRawezpWri9va3x8XFNTk6mQhSURJ6gco8HxUAHO64L5ru7u9ti/NwgHGZkhdfoXqDTwXgOerTTRMjDST9Oiuw9lLOVlZVU+EBnQF/sQB6lUim17+Xds5Y8kUXi0L00pwzijc/NzbWwB6ja45mdYgeMIykd4Nzb25s6X16/fj1taHIu/l5grxDCh9Do5HjlypVUKOT4LPkZXxOHLawxnAGUjbMjsqguRb9OCsBISc2EIM/ghs+NkRspZ2GQkxodHdXExESKXuCiM24iGFfgXBd4jF42/f39SY9wNq6P0R0BN/QoYj6DYHzdkyaq8wIjvy6fcbjHk6YHyYnoheJ8bRYH5eEocOegQs2DMkTRBJtAUkqAwEOmtJqNisdXq9WStwB2zOYkwQkjJu+aRhEHHu/ExETCzzEUUmvfYShKGBaqOefm5pKBaecZujfAwscYOGOFnhn8rS80v+Zhz6XzZj2M9kVKi4NarZaocYwN7BgFPjk5ma49MjKicrncUhTiGx4jSaLSYQXWEnkDp8XlTCjmijkEzjl16lRiEvHunDXkz43BQHmxdqanp9NcUsHonGqiTTYvnhw4P61m8c6chufJt8OeV67Nu+HeuQEkOpCaPT14T+6N8jMgj+7u7rQWMIY8m6914Lbe3l7Nzc3pzJkzmpmZSe8JmiAQGjAKni2KcWtrS2+//bbK5bI++MEPtuz97u5unTlzRvV6o2Eaihg5pGLgAAAgAElEQVSHw6FRxu5GAXH8nzWBcevv71e9Xk96BN2B0WOduuI+cRCK1EyC7OzspCQmShb4grJisEjHlWu1moaGhjQyMqIXX3wxnYjBeXR37tzRxYsXJTW8sR/+8IeqVCqqVquKsXkc1vLycvIeWSCnT5/W7OysXnjhBU1PT6fNUS6XU7taMHCMz9bWlubn5zU8PKxyuaxz586l7nfg9Uza2tpa4nRzgg9tTcHdXHF7kQYbnH7iJGMoCPDP5f0qMFqHLShwx8HZOK7A/RCLU6dOpcQf4StUNKItjOZzzz2X6IKSWjw73hO9mt2TZgNQnekbGeWNhw3rI4SQeNxSs5jCuxA6Fk7BkNRkO3hdAR7/+Ph4Ukbz8/OqVCqpPgAnwPnPXmAiNXu3AJE5/9nx1nDIvYty4+DjBM/mOfk9z8+Y3LC4gcqvzR5sZ6CAx9AN3r2yXm90auzv71e1Wk3zhtPkdERK2oFiPGF4+vTplsNa2HusO5wU30O5ckV5505T7sV7VOG5PtYp182NQy7H1k7W/093vfX19dQ/mkTRxMSE1tfX0+RJTWyuXm92lQMy6enpSQ2ESHptbW1pamoq4dnvvPOOKpWKVldXU/WYh/RdXV26fPmy3nzzTU1PT+vjH/948gLu3buX2CqEu6VSKRmDjY0Nra2taXZ2Np3i44cfS0qYME21aHyFB+aQhIdieAJ3795NxgHjh7dH5ELPCowkBvK9+gs/7pxiIHJ2BB6V93cBA3da34ULF+4rtmG+gJouXryYPF6UO+vA6X1Ssy1xT09PS4UsioUNRQEGOKiHvHi7Ozs7KYeA8seZcIoY9+PgB0nJKanXG1Q6IKSLFy8m5gwVvRwO4N4s4jh5ju17ywAdYoUt65DoOMZmlSEOk9RU8i6+btutB2Av3iWG31tplEqlVOTGnEOzdP51d3e3pqamFGPU97///QS3EZF7gc3g4KA+8pGPaGBgoEUXYRQxDDCBcCgxFDhBrlgx5P6sXI/1DeGC6IRnlpQIG/T/YY2jG9sVMSHH4oHn4TzhCYqOxUGLTbLO9PoNISSPz60TmwiKH+E01hXMnVAbpXZQooBwf2RkJJVsxxhT29iRkRFJSngZzXzu3buXqkjZZL7pwa3v3Lmj8fFxjY+Pp4QZ1/MqRWd1YEgoViHhwiLzPhzd3d2JnuntPTsxn2wyzyt4QtAZQSx25/aPj4+njnwwC9iwq6urLTROFC2fdXqge9koA6cAomw86ebcYx+7K32/bowNGqF3N5TU4kXx7A7zAOGxprlHuVzW5uamSqVS6nbp/UGI4Pz+Tm10imQ85Apb5pT35gVQkhIPHkhJanZsZA3zTiW1GGhnTzmzBenq6mqZW774O76XlPj3IyMjKpVKiQ3Gng0hpKZvzj7K7+nrlfdK1NMuQcm64l/3slkn/gU854l4EAav4HYP/kEO17GdSk8o6lgfjIy9vb2kiOipDEWPBQF/fHl5WWfPnk0cYwovYBEASXiRDV3wPAsutbbljDGmpOqXv/xlLSws6Pnnn9cnPvEJ1et1lctlvf/970+9MWKM2tzcTLDBwsJCiwfJtfb29rS4uKjLly8rhKCJiQk9++yzLc1sgGZYKM5awJvmzE68I+elE5WwkEm4gjN3wgNnE+LVejMnT3a5UoUG+L73va8lWc0c83X+/Hnt7u6qUqkkOAK8nM/Ozc21hPGeEPPkFtAXXGGUvoexGBiUFt6f4+KeEKccm+ZE1Wo1KedKpaKdnZ1Ei3zppZfSsW5EIiE0KIskTVHyIYTkebv3zzOS7MYxaRPOn9cjVtgGK9By6h0RFtEne0lqUv3wyMkpuFHPDazUhCQc/nNaLMba55T8FY4Yim5oaChF4px25TBUb2+vPvzhD2tsbCz9nSdkWR/sDafp+nr0Z5KaEQDwT57UJQeCZ51HmZKSg0pUABPODedBcqxHqnlIiwKnoxkwAArpzJkz2tzcTB5JCI2CnNdeey0lNKAf0l/FDwVwPjXegjd+YvLyjLLU8CQuX76s27dvp5J6MNHZ2VndvXs3dau7deuWrl+/no7lgv4F1vfGG29ofn5eOzs7euGFF3Tu3DmVy+W0mO7du6eNjY30+ZyNsr29nU77YZGPjIxoYmIiVSA624X+GSsrK+nddEKBs+kcisrDZ3Bhxu3KkgiBqlcMLCFsb2+vNjY2WpJcHv6yIR1bzCmJRG0kn4FZUB5sFvcM/Vrcg2d2PNivwe+lJveXL6cgooAZ1507dxJU5uMhEmNNcF/eA+81w1wfq8I2WoFWb29vRFl5VNjV1ZX6uJMfcAooysoNt7dLYC1gFHw/eudCV5LuAVMHgLdNhESSkNJ0NwTktjDEKGMiMRwdDuXIoznmki93sJx04OwokubAhkBsXJt5dNwdQyC1npV5kBwLBu7/98w8IQ/eHJ6cH1bAA7Hwl5aW9O6776bkk1/XNwthTR7m+8J2ZZ6HV9vb21pZWdHly5dTjw2YMFwPb6hWqyWsjrHcvn1b1WpVV65c0dbWVqLDcXAFeCPvgPF53wu8SbB4lBl0RxYJ2Kyf/wgb50GUpCeZUxZbDkP4BoAnT1IRhg+l4rdu3dILL7ygoaEhzc7OprNDiSjGxsYUQmjpfeGwAt5xzj2GX00v7r29vXSaz+zsbFImvBv+fm1tLSW2UCgU7/imAvO+fv16S6UhiW9JyYulD/2pU6dSKwGaLFUqFU1MTOjMmTO6efNmmueNjY10SDb7AlwVReRwYniCCtt8XnPDxj2oBEah4RVjyJiTnMZHXsGNAnuMKIiCptxAM6fr6+uSlJrH1ev1BEOw113powN4b3nEDVuNth6wWvKEqn8xFw4XoZRRwHjcQ0NDqZ8P4vg4vyM/5TRCkuwHybEpcF8cDhvQX5jEERtoeHhY4+PjCR+VGptodXVVr776qmq1mubm5lISwi0tHqmHu7lyzD1vXzxS42VWq1W99tprevHFF1OfBDrO8dK92ZJj75VKRW+99Za+973vqVwu6+zZs7pw4UIq8QcagdFC0sN7HRNu8gx4dTB14B7DC6eYCNYLYW0nhMXGJs+z/xgm8hxdXV0psdzX15foW3iz1WpVIYQUsktKOQcWeanULBpxr83njqgIGGR9fT0lzHt7exO9j7UYY0zMIBKQOzs7qUkahtONCIqAU9W9epD1g6Lyqk6iKO/LAlRCopsqVIqZdnd3W3qGSE3e8f4zH2rvonv37qXjBL2QJU/SeZQAVo7HS88johpfgx71ovAcC/ZKThycW7dupbkcHBxUuVxOnSCr1WqqzCTy5RmuXr2aGqDR02h5eVmbm5v6zne+kw7MAArEw/c5g7LrRi3HuIkYR0dHWwoBc31DVMC6Yw7dmc3x9lyOXIE7L9I3AAu/VqtpY2Mjedyjo6Pa29tLxQwxxtQbgr9fXl7W66+/rmq1qpdfflmTk5MaHR1NL3lnZ0crKyuJ5YJiZCPknrjUirlJTQ9iZ2dHr7zyis6dO6ePfexjOnfuXMpa7+7uan19PWHceEnOFimXy3ruuef0/PPPp6yz1NgoVKTu7OykzDTCvWkc5DikZ/XxWlFSq6ur6d5enHCYgqflXqBjgXt7zc6DGCjYIRiqcrms3t7epKTW19dTq1zaF0D72traShuGEnbmxxRZ8sCA0uDXbm5uamNjI1VQ8jnWCwqcTcXReSRegUXw3nzDc3/+1o0v64F7wUIZGhpKjcpQhCgdDmCm0jCvLeDaNq+HVmHrEKdXyjo0xfp1Y43idM66z42kluQm0BBfHrl5rgysX1I6lg9lSsERDc98neMkcqxfjDFVVmMcFxcX03msvFucPGfbEFnwfpxr7jxuoBOvUfH9LKmlxbMngUEZ2AsnFgOXWgt6UOLeYhTvCkz8zp07Gh0dbSnYACp49913NTMzkzwgOgISPpORzsMsqcnbzMM2xuiQC2cacjKQJ2+Wl5e1uLiYTszp6upKCqFUKml6elrT09NJYYEf89xOGfLxuYLC6vvCYRE7Tk5Jv/cbP2zlzdhQdIwLxcy8UjRFxVtXV1cKgUMIKcw8c+ZMwgpReByEC/5cLpdbMGZghBBCuif3LZUaLQoonurr60sHYdTrdd24cSPRzdhglUoDXZiYmEjzQzTo0JWzXZzeVy6XW2hmvp5QWJ70BHoiYR1CSM7MjRs3Um5od3c34bm8N1hJBlUcau8iHCA8X4puKHAh8nNvGUOzu7ubaHzsXVg2sIzIc9Tr9YRd48n6HsR5IZKWGiyxvr4+Xb9+PSlL99YltRjQd999Nxlf5qdarbZ41d3d3amHvOee/F1gYGOMCd/mkBIUd39/vyYnJ5M37j3tWafsHY82eEckukEjDpJjU+AoTCwiE+5JOiwcp7dwxBnWmP7bhJA3b97UG2+8oUqlomeffTZxQ/G6JKWF4bBHjnf7wkFYWN6wf35+XlevXk34tltMx02dDvmBD3xAU1NTGh4eVk9PT8K0mSw6MqIgPGmWh208B53UnGJIpSfFIp5I7YQwf+2wb6m1r4ZTGlnA/D0bDE487wAvjsWPMWIz81x+T/7vSoINRWHY8vJy8qryyBDFBGzh7ALHRf1Z3dCgYPk/74HvgU4cS+VZ4P/SIqFdfoHPdnJuPT9ABWlXV5fGxsYkqcVw8Xnmxb1TYDXyWzCniGqcslev11OCl5+zXtq9TwyMR3/+L3sH79rZJXjdKEnWMPPIvHMfolmiDwwHEAkceQy+O4tSszcRrWNxCCBneEsRT1wfJEeqwH2ipdaEJuERFggsi2TPxMRECp3Bfmu1WjojE4+XUGh9fT01hfJMryeYmERPuuTKm+9pCXr+/PmUeKRo4+7duxoaGkqnpXjRkdRYSFNTU5qbm9P58+fTZGPRKeKgvNo3qXtt7Q4+YNz8noTXxsZGam/rG7xTHjibzLPyKGPeK5t3dXU1MU/c6+7u7tbKykpS0njhQD9g5NPT0y08aO7vyjenAvb392tqaipt3mq1mpJGfIYQGSaMb0DONsUBYE5QcER2vq7x8FAQzmwJIaR+KB5B0d9mZWUldWDk+hgw9oCkBLl0okCLZ0B5U0nrUSsGljl2j9I53ihDDBE/J/8DlZh1hAJnbTt8g0Jk/vkbd2wcrsiNvSt953Wzjtwoss9xLvkb9jjUZW98RgEfXrzDxjwXh3ZIzaIeT6QS7bwX5HksSczcu5XUYmlJdFHAQKaWrL1zM8EKWTwYgdXV1ZQY8sVAEpTrt4NNcgUOPWlwcDC1QnWvnc0OQ4FFhNA57cyZMxoaGkobnVCUBezeGQrKJz+HcjzjzUZDWfjC7ATu3W7+oJh59MACRtk5l31lZUW9vb2amppK8BYl7WDkHsryvttJzgF3aE5q9jhhDO4IoAiAr7wM22ltTuMDA8+pi4yBe3szLJQtjgThtLMxqG9w6MvXheOzSCfnl/0BRLa1taUQQkr20a+IiIYoh2fFwWDcMMUkJUjKE53sX2orGAMYMdeh8ZRDiMyt88dzzNqjA8ZOohsIiDnDKfS1x7qkjfH4+HhaI6wpDL/DfHx53o21x34l30ETN3csDpIjVeD5ImuH77KAYaOQ6KOFJNabl1kqldKmcCsKtjUwMJASUJxGvrS0pJWVlXSCPWNwBe7fY1XJdrORCcFKpVKCeQg3Pdl09uxZzc7OamZmJvUwxquBmYE1dqXn//cFyeb1rLYvOodMcs+7kxg4lZUsZPdemGM8jXq9rnfeeUd7e3uanZ1N8w3Xnyw+XSSpLEW55l4gG8YTtWxI3hkH2+7u7ib4AsoYhn1nZ0fT09Mt7JbBwcGET5LE9AOWc6yb67nn6vUJJF69vwpSq9VUqVQSW4a5RAl64trntRMQiicWnY9OGwn6oPjJOkQJnsRlDshp8DlotyT+eH84Ig4r+Tx6spD1lnvS7RxFX4N+HTxyfu49T7gGChc4FC8bncJad8eA58HQO+HAHUV3anAsQQbeK2o+cgjFhcl2bBd8lCIUPNbu7u7EQiBZxiaTGk3vu7u7ValUWqr0Njc3dfv27VS4EUJoKUF378WxTfB3YJLR0dEUWnvRAt4Yfb4JgUJoHBowPT2tCxcuaGxsTENDQ2mB8ozARVhcJp93RbYcRSM1jY0zInyTMem8X/6mk144GxYDxmZAgeON4Y3Db6Z3DAVbXlEIhZTjyPCyq9Vqek/u6TKXYJIoZIwwuGMIISWiKDLhXFXqC5hnija8spB+M0Q7vGeYT3hupVKpJbmG5wh8xPigVfb19enq1ataWFhQrVZr8QpZj64IUJqeTzhsQXGyR/GMl5aWUnKSCmBnjbCHgMBQyDznwMBAej7W6vT0dGJi0bGSKNkVHp4379IhM8Qjbn8WrsW+QZhPonqHumCLTExMpFwcjqUbHlfgGCvGBwvFacHg3JVKRZVKJVEa/VCIE6XADxoIA829FjCnvIKJJk2EcCwC8ENJCRPDI4c7zufyhIjjzY6j4lmTbZZaDzAlNEc5SM0KwJxzKjX7Q5DNxnMgecLCwmg5HMC98cxRkj72PLnmRrOTCtyNsL9XlI1HNyhcDiqo1WqamJjQxMTEfYURhKzw5WnkhZLm/ZH0lhosFVrAogC8RSzX5x70piG3gYFxWAr6JgoAxQmXm6Qk0R9U1eHhYUnNohOpuXFJWMFJ7+/v19LSkubn55Ny9wgq9+RYA6ynTsIoGCnPVQGpEPUBCbCfHYf2fAXvwRtAOUzC2ncoxRUxcAVz6oYjhzzci3c6nnvCXJ/36kVdIYTE46alB+sxNwLuYXv0nDPGpCbkyTv0ZKrrwxOlwF3c68WL4qFYHGCBZHslJRzNPVapecQRHf/yxJ1zQz3MznFMV95sqvHx8VQNyAJECUEd8sOOoQhR4s4YCd/ZAJ5E8cKcvG91voHdQ0dQdl6N5slOh4Y6MZdADF42TsUhnpcnoaSGUrt586YuXbqUIhRJKelMWIkHi0Lz9rwbGxstXjvP6JCDF4DQdrRcLqdiGaK6ycnJ1AOe7nBwsXlvKCnmwHnnGxsbaS06bMJGpqoYmuzAwEBa75VKRVeuXNHCwoIWFxeTQva8B3xiCn58g3cKB8+VJ8lSsPCurq6UY5qZmUnUWBQs59ni4Pi1BgYGEh6NEMXw7uh/xNyjaN3r9nXuTb9wAtnfGBQUu79joE2n7PHe2ftUezo3nPmW1MIdh/nEnHufHfQcyWo8cJ7ZHaETx0LJQ3ofnGeHOfsQvjTwBTgUiUT4tJ7Qo4BleXm5xbtFUTqG6nQnp3/19PRodHRUo6Ojunjxovr7+xVj4xg0NzooK5Q9yU4SqJTTg8/BGMipfVSP8i+b1DcDipCNw+YCM67X6+nd4OnjgTo22QlxpoBjnnzxbn0chOTkI27fvq1Tp0614Nfu9fkxV/7s3DOPNjyBi8GVWjvi+e9ZX3mC2JsZ+brN17CXYENthTrJJsdbdwPLzyuVSqqY9eu64faOh4y/k4nq/Lq8b7pkUhPR29s4XMWpd5ISOwgoi3XMc+VOhhsMINJ8HaO4c2/XlXoIocWhcAWeO4y+BnIvndwJkWDuHDm845RKiA9E5x41kW+B6uvV555De1DyEnkiBR5C+JSk35bUJen3YoyffdRr+IaUWtkU3hsEy88kgT2xQZgcStwJL/F0u7tbT05xz4UJwXMmbKLF6eTkZEp4OW7n45aaFlhq7evg4aN/eUhMyMmE87csKq7rMIlf1/mlZPfJFRyk5A5LMEzQv/BSYozJq3bl7ouzWq1qfX1dMzMz6uvr04ULFxRj1OLiosbGxjQ1NZWUN9HY+Ph4qtYkGeaeE/MMTOXzw3zQzjfGmLwelO/a2loyyO7Z58YExc5pPdAVaXhG0rK7u3Ho9a1bt9KhH6dPn9b6+npSZvPz8/r6179+3/pyOA2mExWsDuU4VHCY4saf+xE1lEqNE26q1aq6urr0zDPPpPfGOmVcvEdXou4w5U4Jax9nhIg7xiZ5IU/qOvwJuQGj5zqCHAeGxYqgWpSmGwOPNHwPYpB5Fj7f3d2d2mI7Fs49qZQG9+YwE/JIDwOfSE+gwEMIXZL+g6SflnRN0jdDCF+MMb75qNdy5e0bjw1AdpYXQGUTni3WsKurK/XuZoGDL9Fq0jFMrK0nSaXGJAwNDaWS/Onp6bRpedHtlJHjkl6qz2T7RnBLTTjmsIMrcCIIT2RJakmIcPbl9va2+vv7W7iqbgA6ocClZgMoT7gRORD641m0e3/Xrl1TCM2KTLwdkoIkbJlrp5N6ok1q1hRwf5SNJ9R87vlbZ1l0dXUlXNI94dyw4jHlXhzrzEN//h4YiGTqpUuXdOXKlcT9RSngrKDEnengCW3WyGF74H69/NkwmJ6onp+f1/j4ePKcS6VSiiipkSACzvcC7xfBu+XdwnihjQT7wfdRbhDQAY5FM+d8DmjPvXI+7waCv3cFLanlnryv3PN2Q1CtVlWr1XTt2jUtLS2lmg1PlOfRY6cglL8o6VKM8Uf7D/B5NZrGP7ICl1pDNSzuxsaG1tfXE4OAk3oA+lk8MBuwpBT/gGHS1CkP31EmWOnJycmW4o3x8fGWroLc10N3lAOhP5iX80K9gIANz1hdiVPgQzTQ09OToge8GSAVikB4BxzFtb29naiOsHB8gT9MWPa484diRoFjxPb29jQwMJB471Jj4eMB37t3T2+//bYWFhY0MTGhubk5XbhwIXnW9DGfnJxMmxJcFG8VSM0ZL7xD+iv39PS0/A3zRnSGgZ6YmFAIIRUVSc0ElVPmnHfvEZmvT7jleOvkb+gdf/fuXX31q19Nh1s7NMf4WJ8YQiIcX8udSmLmkJVDPk6F7e7uTnsV44Sx4d07Vs/ale5X3Hm+hvXkStUNttTcR/wNCpOomp/l90MpuxL3/eKwGn/fjvvv13Woy5U+uTgS9yhu0AZ3gHjuTirwOUkL9v01ST/xqBfJrbyD93hEnvBD3HI7K8QxTLxSPFwm3LEmEpG0faRiE/6v951gUToW6qyS/Fl4HremHiK5EULZ4LX7NdwDxGtAkTmdMsaYesbgSebhZSeE58RD4p2WSqXUMpbICuqeUzF5R3fu3NFrr72m6elp1euNQzM4Hg/YjGSh5wXwqh3nxHjh8e3t7aVeKN6yFCXMcXxEYXjBzBvGGIMI+8mjOYwYlETG7fi71IwQvva1r+nGjRtaWlpKRgaPD0Ph3hz5DQw913WueCfmVmrmLlhDOCBQJnd2dhJ7ZmBgIBli/m58fDzlPOhd5GNGaSLsVc8T4CT5GBxqwuBzT3dafA+2Y6O4Qm7H5uKz/g7yvUneioPJcapKpVJCERYWFrS8vJxaCFO0k+sFZ3MdaxIz2Akf7UKk3MJj2XPGBtVK+cv1MAqFBr6Gd+XeiqTEXKDwBFwRcj4evCe7GLNXYUrNpuseaufK2ze5h9xSMwTFY3U+ax5CudeCIQFOAkfnWW7dutWiwH1zdEJ83lh4zAHK2b0k4APeE8bt6tWr2t7e1rlz59LzYDjZjM7s4H0DpfGcZPnr9XpqqOSHBxOCs67wGp3dgeAxdnd3J44/RsHnmzmjzwceGEaecXJ4yZtvvqnFxcVUvMR1PXrA4869b+abSMCV0mGKK0yej/km4mE+WHNra2uJBEACkL2E0T116lSCi/J13g5acQeE3+VQiNMCPbLlHge9p1Kp1MIm8n/5fS659+9UQc9b8K4wWihtKNIekbd7Dx3DwCVdl3TWvn9m/2ctEu2EjxDC8naD57fyBPc9bJnQyRqP1Pkxve8wL+aRCCwbPF+41XiLVO7hiZMYhrcfQuOkpS996Usql8uamprShz70Ic3OzqaNghH1Bvh4ag7jsCE8RKU4x5tDbW5uanFxUaurqyqXy+k4M6mZROQ6XBtFjuclNcNxD8mp/lxdXU094a9cuZK8btgZGHC8a/qgkzjr6upKPa/9IAfgE2/m1ClBueROCf+v1WqpNJ5/p6enW5KO3qSMQ0YwtFIrjZdnZB48AnWl7R40kBXOEG2eidJcIToE5SQJnBEfkz+/1Boh4G2Tu3L4FIhpeXlZy8vLunHjhtbX11Pxnh/Q4gr8YaOpJ1Hg35T0fAjhWTUU99+S9Lcf9AcxxskQwrdijB99gvseqpy08Ugnc0zvJXn05KEtB7aSiMRTIUGJh+UQmTdOun79empHC8zEZmbh+wbPw/KRkZGWmgCUHq0QOA1+bW1NN2/e1NzcXIJY2kF8rnQ8gYhhcY+N36+trWllZUXXrl3T8vKyarVaehcko4HyyKMAw6Cg8MId683hgcOWdtdEYYNDQxUEw6dSljzN7u7ufQYJg0vkgyfP+8uNBYbXjSQeLorXmSZ4/jSNcqWce8/cz3+XR4hSK/3UDQ2wCVETBpZcx8rKSkpYVqvVVB2eF+7wLI9iiB9bgccYd0MIn5H0f9SgEf6XGOMPHvd6hTy94h44XjjJYSooSSb6oqWvO4kdch141VKDJvrqq68mNgdFPp4glZpeEmFzd3e3ZmdnNTY2ppdeeil5xXzRquEb3/hGwiB/8IMf6MqVK/rkJz+pkZER1ev1ZGhQHHfu3NHNmzf1+uuvp46PPjZCfRTGxsZGei8oYap73dBwbKAf5OHMBzzwvr6+lpNvvFlWJxQ484vk3ihzLymNYXNzM/Gm8bhZB+R4gJa4HgaV71Fifp8cHvGxoPgdqkGBM+488cm13Kv3n/n9PQHq0K0nmFHg5D1oE72yspK6S1Kc6Li3Oxf+vh/GE38iDDzG+IqkV57kGoWcPAmPyO/3/AVfeU8UeOEoWD5P6NnX15dyHZ7IIYHorB28bfe48JT8vru7u1peXk73deUO48QbB+Fxvf3224lrDawhNbDMhYUFVatVXbt2Ld3Lx+I5ihhj+teVApiwc4opAENpu1cJ3utQhEcRjp8eprji9J8hfk/yTpLSSUPM39bWVmor4Bg/fHipyfLBAeC6zu1Vez8AAAuxSURBVD7B8+eZ2+VAfDwoVtaUEw4Oelb+1qm3UmuPcQyQc7390GK6qc7Pz2t1dVXXr1/X4uJiOt4Q6MSLdtrlUx5mPo+jlP53j+GeD5KTNh7pGMcUHpPfnycxPTEDFIAiB/Zgk5RKpRavBO+F63AWZr5hd3d3E5zC5uQAZ8rTJaXDp/0gCLwob/5FdPDd735Xvb29LR3nKCj70Y9+lM6qBNLAa+YQDzcYbHb693hhER0RiSb6+/tbPDJP1jlkQMif99LphPi7aocFS62JzZyDD1RUq9UkKUENXs3I2nCIyw22J6y5n3vTGEh/B3yfl6ajyCW1NUwOwXmi1K/rnHyvsiTywjngZJ1arZZ6xrDGc+75oyhtl+PoB36iFOZJG4907GN6LH6/U9rykmD3ToEjcnHFjmLFy2SDcKhCX19fgiX8FCS6Cq6traWGUiQZc75vzjZwVhSGB+bK5uZmwp1h1dy9ezcxfqamplK/ekJq5/RLSl4jyVqiDw/hHcfnnWKkent7W4p83Ijx3jol/r4QxuGK1BvEsR7q9Xpq28wpPsPDw+kIMhK20D5RjMxTu94kvDMfE/d1Zc888r4ZXzvj4Nfy4i4+x72J4Bi/J2U5Z+DGjRuq1Wqan5/X2tqalpaWtLq6mpqX5Z73g3IYHYVQCvlzKQ/F7w9GD8V7yr0KqbkAnT6IuEeNAvPk1c7OTkv1IU2m4GCT2CREhonBKercox07xD069yylZmLQFTneMuP05kT9/f0aGhrS0NBQGh/4L8/NaUv09tjb27uvotDLwj2Bx/1yGpy/604lMR8kebjPnANvlEqlxBOvVquKMab+RCGE1EAqZxdxDZ6fa7dTtlKr1+zJSCCXPDlJXUg7uqJ0PyfdFXh+IDrrdHd3N51jSZK6Wq0mymDu2DyIMpg/34Pm9cgU+KPiqh0aw1lJ/1XStKQo6XdjjL8dQvgNSf9I0vL+R399H98/qnFdkbQpaU/SbozxoyGEsqQ/kHRe0hVJvxBjrB7VmN5LYkYPvXHjxkmhh54kWuhRj+VQ6aHS/TBDO2OXwxleZo/h6upq9FUnmY3B7+/v1/DwcIqwHIogWsNrzj3+XOHhbfMz/7knjL04KKcvtouG3OOnTgQHgATy+vp6Ok3n6tWrqdMmLCegE2+t0E4x+7gPUuguR6LAHxdX7YDsSvpnMcbXQwhDkr4dQvjK/u/+XYzxXx/xeFz+cozRN/uvSfrTGONnQwi/tv/9rx7BOB6K3+8STxA99KSMQzpZY+mUeKTA9yGEFuiDXAf9ecCIZ2ZmNDw83FINLTX7i+BxA8dwr7yy2vMOsIYOYpxwXcTvxbU8uexK3SExkpDg26urq1pdXdX6+roqlUrq0giz6kHYdztF/TAMFOnoPPBD7ZvyuBJjXJS0uP//zRDCW2pABidRfk7ST+7//3OSvqajUeCPzO8vpBBXOHjBUCdjjMnrXltbS1AQNFBv1epePooTJes4dw59+P2BNnIl7n/j18g9XIdMnJ6I4QBPv3v3bjr6DpogSUuMFEwhvlDa/q+Pj3f5sHJUCvxQ+qYcpoQQzkv6C5Jek/SypM+EEP6upG+p4aUfJVwRJf1JCCFK+k/78MT0vsGRpCU1YJ/OD6Tg9xdi8iAaYbufoRAdq3eFTmKYr4GBAT3zzDMaGBjQ2NiYBgYGEpvHv+BX5/fzXAVKHHhGavWseRauIzUTlm4MUNre9VFSqmO4c+dOUtJLS0va3NxMynt7ezsVhtEa2Ktkc+jkQfCI4+IHyY9lEjOEMCjpf0r6pzHGjRDC70j6TTUU6W9K+jeS/sERDukvxRivhxCmJH0lhPC2/zLGGPeV+5FIfDx+/0lh85yUcUgnayyPJbkCf5jP53xqqdl4Kvdqaa3gnSljbPb8du77QeKK/iCF9yAs3yEMvw4eMmPnGECO4OPfra2t1NObthA5Rz83MIeVcD4qBf7IuGqnJITQo4by/m8xxj+UpBjjTfv9f5b0x0c5phjj9f1/KyGEP1IDcroZQpiJMS6GEGYkVY5yTI8qJ4WOeVLGIZ2ssSCPQyZ4WI/RIRRPRPI90Ab8bJp+3b59W/39/arVahocHNTIyEhqycwpP1KzqCeHPfIEpHvg/B3jkpqtfb29MkbCvXMUN+eT3r59O3nZ1WpVt2/f1urqajpBjFoGqIJ5UZqPyVkzbeaopV7hQXJUCvxE4Kqh8TZ+X9JbMcZ/az+fMbjib0r6v0c4pgFJpX1MfkDSJyX9S0lflPT3JH12/9//dVRjKuTPp3SCTHCQkuHnDmm4By5Jt27dSpxsOhoCUQwODqZzNL3Lnx+O4IKHnjcyazc+fuYFPXyGZlh43Lu7u+mYO1rh3rp1S7VaLUEpnH7lnreXxz8ux/vEsFBOEK76sqRPS/p+COE7+z/7dUm/GEL4kBoQyhVJ//gIxzQt6Y/2J6lb0n+PMf7vEMI3JX0hhPBLkq5K+oUjHNNDy3HSQx9ACz0WCua+gvyWpOsxxp/dd1g+L2lc0rclfTrGeH8d99FJR8gE7XByV95xv+jIDyVBqeGl0rFya2sr9ean7wvFWzT6chgGAa+my6Q32srZJ+2UOuP18XFOJcoaRX737t10WhN9zYko2iUrH9bz9s/47x/02XBYWEwhP36yr7DekXl0kn7xSTy6R7z/jKSZaLRQSX9D0t+XtBabFMyxGGPHGTwhhF+R9FFJw/sK/AuS/jDG+PkQwn+U9N0Y4+90ehwPGN/PS/pUjPEf7n//aUk/EWP8zAGfjzn27CwOV0YoTf9czvogMegtBryvCD1x6F7Z09OTDkegXQG9c7yj4UEKPVeEQCnunaOwUbYU2+BVUyEK/k37AiqAgUtQ3N71MPfA2ynvg6IXxAzBt2MbSuqPZRKzkEOTY6WHxoNpoUdOwQwhPCPpr0n6LUm/sg/X/ZSaUOHnJP2GpGNT4A8jwSpsH+KzDw0DoMicu53ztPkX7Nxphru7u6nhGb3kvVNjrsjbnWaDgnfvGG+ZLzppgnnTcpg2CChwV/R5q9o8WXmQN/1eDJSHkUKBF/IkcmLooRkt9DgomP9e0j+XNLT//bik9RgjHZau6fhrDt6TTBCzCtt6vd62wrbdyTad7MeyLyelyvY4xtG2yrZQ4IU89dKGFpp+F2PnKZghhJ+VVIkxfjuE8JOdvNcTyiORCeIJqrCVTk5l60kZh1Qo8EKeTI6dHtqOFqqjp2C+LOmvhxB+RtIpScNqJHZHQwjd+174sVFnkRNEJijkkORgdnwhhby3JI8uhNCrhkf3xaO6+UG0UDUpmNIRUDBjjP8ixvhMjPG8Gu/gqzHGvyPpzyT9/FGN42EkxvhKjPH9McaLMcbfOu7xFPJkUijwQh5b9j1LPLq3JH3hiD06aKE/FUL4zv7Xz6jBnf/pEMIPJf2V/e+PQ35VjYTmJTUw8d8/pnE8iZykYqSTMpaTMo6CRlhIIYUU8rRK4YEXUkghhTylUijwQgoppK2EED4VQvh/IYRL+wVRR3XfsyGEPwshvBlC+EEI4Zf3f14OIXwlhPDD/X/Hjmg8XSGEN0IIf7z//bMhhNf238sf7Od/jkUKBV5IIYXcJ9Y35a9KelGNdhMvHtHtOXjlRUkfl/RP9u/NISfPS/rT/e+PQn5ZjRwP8q/UOADmOUlVSb90ROO4TwoFXkghhbSTVGW737+FKtuOS4xxMcb4+v7/N9VQnlTYfm7/Y59To21CR8UqbH9v/3sqbP/HUY7jICkUeCGFFNJO2lXZHnkl6QmqsKXM9ERV2BYKvJBCCjmRklfY+u9igz53ZBW2nbzPk0hRiVlIIYW0k2Otsi0qbB9OCg+8kEIKaSfHVmVbVNg+vBQKvJBCCrlPjrnKtqiwfUgpKjELKaSQQp5SKTzwQgoppJCnVAoFXkghhRTylEqhwAsppJBCnlIpFHghhRRSyFMqhQIvpJBCCnlKpVDghRRSSCFPqRQKvJBCCinkKZVCgRdSSCGFPKXy/wHsp0QtACOBdgAAAABJRU5ErkJggg==\n" }, "metadata": { "needs_background": "light" - }, - "output_type": "display_data" + } } ], "source": [ @@ -704,21 +517,16 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 23, "metadata": {}, "outputs": [ { + "output_type": "execute_result", "data": { - "text/plain": [ - "array([[ 2.75, 0. , 0. , -78. ],\n", - " [ 0. , 2.75, 0. , -91. ],\n", - " [ 0. , 0. , 2.75, -91. ],\n", - " [ 0. , 0. , 0. , 1. ]])" - ] + "text/plain": "array([[ 2.75, 0. , 0. , -78. ],\n [ 0. , 2.75, 0. , -91. ],\n [ 0. , 0. , 2.75, -91. ],\n [ 0. , 0. , 0. , 1. ]])" }, - "execution_count": 17, "metadata": {}, - "output_type": "execute_result" + "execution_count": 23 } ], "source": [ @@ -805,9 +613,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.4" + "version": "3.7.7-final" } }, "nbformat": 4, "nbformat_minor": 4 -} +} \ No newline at end of file diff --git a/code/03-brain-imaging-data-structure/03-brain-imaging-data-structure.ipynb b/code/03-brain-imaging-data-structure/03-brain-imaging-data-structure.ipynb index 77f7768..2ae849c 100644 --- a/code/03-brain-imaging-data-structure/03-brain-imaging-data-structure.ipynb +++ b/code/03-brain-imaging-data-structure/03-brain-imaging-data-structure.ipynb @@ -4,14 +4,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Brain Imaging Data Structure (BIDS)\n", - "\n", - "---\n", - "\n", - "#### Objectives\n", - "1.\n", - "1.\n", - "1.\n", + "# Brain Imaging Data Structure (BIDS)\n", "\n", "----\n", "\n", @@ -47,14 +40,14 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "\"Drawing\"" + "\"Drawing\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### Structure\n", + "## Structure\n", "\n", "The current spec https://bids-specification.readthedocs.io/en/stable/" ] @@ -135,7 +128,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Conversion Methods\n", + "## Conversion Methods\n", "\n", "- [heudiconv](https://github.com/nipy/heudiconv)\n", "- [Dcm2Bids](https://github.com/cbedetti/Dcm2Bids)\n", @@ -149,7 +142,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### BIDS Validator\n", + "## BIDS Validator\n", "\n", "Can be run [online](https://bids-standard.github.io/bids-validator)\n", "\n", @@ -168,7 +161,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### BIDS Apps\n", + "## BIDS Apps\n", "\n", "BIDS Apps are containerized applications that run on BIDS data structures. \n", "\n", @@ -222,7 +215,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.4" + "version": "3.7.7" }, "mimetype": "text/x-python", "name": "python", diff --git a/code/04-open-mri-datasets/04-open-mri-datasets.ipynb b/code/04-open-mri-datasets/04-open-mri-datasets.ipynb index 6bdcb95..516bdb4 100644 --- a/code/04-open-mri-datasets/04-open-mri-datasets.ipynb +++ b/code/04-open-mri-datasets/04-open-mri-datasets.ipynb @@ -6,6 +6,8 @@ "source": [ "# Open MRI Datasets\n", "\n", + "----\n", + "\n", "For this workshop and the fMRI and dwi workshops that follow, we will be using a subset of a publicly available dataset, ds000030, from [openneuro.org](https://openneuro.org/datasets/ds000030). This dataset and all others hosted on OpenNeuro is structured according to BIDS." ] }, @@ -27,16 +29,55 @@ "\n", "### Datalad\n", "\n", - "`Datalad` installs the data - which for a dataset means that we get the \"small\" data (i.e. the text files) and the download instructions for the larger files. We can now navigate the dataset like its a file system and plan our analysis." + "`Datalad` installs the data - which for a dataset means that we get the \"small\" data (i.e. the text files) and the download instructions for the larger files. We can now navigate the dataset like its a file system and plan our analysis.\n", + "\n", + "We'll switch to the terminal for this part.\n", + "\n", + "Navigate to the folder where you'd like to download the dataset." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Clone attempt: 0%| | 0.00/2.00 [00:00,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ...]" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "layout.get()" ] @@ -206,9 +1557,1020 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "{'subject': ,\n", + " 'session': ,\n", + " 'task': ,\n", + " 'acquisition': ,\n", + " 'ceagent': ,\n", + " 'reconstruction': ,\n", + " 'direction': ,\n", + " 'run': ,\n", + " 'proc': ,\n", + " 'modality': ,\n", + " 'echo': ,\n", + " 'recording': ,\n", + " 'space': ,\n", + " 'suffix': ,\n", + " 'scans': ,\n", + " 'fmap': ,\n", + " 'datatype': ,\n", + " 'extension': ,\n", + " 'adultadhd31': ,\n", + " 'adultadhd12': ,\n", + " 'adultadhd13': ,\n", + " 'adult_hyperactivity': ,\n", + " 'adhd_c_ina_a2': ,\n", + " 'adhd_c_subtype': ,\n", + " 'childadhd32': ,\n", + " 'adultadhd1': ,\n", + " 'childadhd30': ,\n", + " 'adhd_b': ,\n", + " 'adultadhd5': ,\n", + " 'adultadhd29': ,\n", + " 'adhd_c_ina_a1': ,\n", + " 'adultadhd39': ,\n", + " 'adultadhd2': ,\n", + " 'childadhd14': ,\n", + " 'adultadhd11': ,\n", + " 'adult_duration': ,\n", + " 'adultadhd24': ,\n", + " 'adultadhd6': ,\n", + " 'childadhd8': ,\n", + " 'adultadhd9': ,\n", + " 'childadhd': ,\n", + " 'childadhd24': ,\n", + " 'adhd_f_child_dsm': ,\n", + " 'adultadhd17': ,\n", + " 'adult_attentionseverity': ,\n", + " 'adultadhd38': ,\n", + " 'childadhd19': ,\n", + " 'childadhd4': ,\n", + " 'MeasurementToolMetadata': ,\n", + " 'adultadhd21': ,\n", + " 'childadhd34': ,\n", + " 'childadhd13': ,\n", + " 'adultadhd14': ,\n", + " 'childadhd18': ,\n", + " 'childadhd26': ,\n", + " 'childadhd20': ,\n", + " 'adultadhd32': ,\n", + " 'adult_attention': ,\n", + " 'childadhd39': ,\n", + " 'adultadhd30': ,\n", + " 'adultadhd22': ,\n", + " 'adultadhd16': ,\n", + " 'childadhd38': ,\n", + " 'childadhd21': ,\n", + " 'adhd_e_adult': ,\n", + " 'adultadhd19': ,\n", + " 'childadhd15': ,\n", + " 'adultadhd35': ,\n", + " 'adultadhd36': ,\n", + " 'childadhd35': ,\n", + " 'childadhd5': ,\n", + " 'adhd_c_dx': ,\n", + " 'childadhd28': ,\n", + " 'adultadhd7': ,\n", + " 'adultadhd15': ,\n", + " 'adultadhd18': ,\n", + " 'adult_totalsymptoms': ,\n", + " 'adhd_f_child_subtype': ,\n", + " 'adhd_c_ina_c4': ,\n", + " 'adultadhd3': ,\n", + " 'childadhd20age': ,\n", + " 'childadhd2': ,\n", + " 'childadhd9': ,\n", + " 'childadhd25': ,\n", + " 'adhd_c_ina_a4': ,\n", + " 'adhd_e_child': ,\n", + " 'childadhd27': ,\n", + " 'adultadhd4': ,\n", + " 'adhd_c_ina_c1': ,\n", + " 'adultadhd28': ,\n", + " 'adultadhd20': ,\n", + " 'childadhd36': ,\n", + " 'childadhd33': ,\n", + " 'childadhd6': ,\n", + " 'childadhd10': ,\n", + " 'childadhd12': ,\n", + " 'adultadhd23': ,\n", + " 'adhd_f_child_dx': ,\n", + " 'childadhd16': ,\n", + " 'childadhd40': ,\n", + " 'adult_hyperactivityseverity': ,\n", + " 'adult_totalseverity': ,\n", + " 'adultadhd26': ,\n", + " 'childadhd22': ,\n", + " 'childadhd31': ,\n", + " 'adultadhd10': ,\n", + " 'adultadhd33': ,\n", + " 'childadhd23': ,\n", + " 'childadhd7': ,\n", + " 'adult_impairment': ,\n", + " 'adultadhd27': ,\n", + " 'adhd_f_child': ,\n", + " 'adhd_c_ina_a3': ,\n", + " 'childadhd1': ,\n", + " 'adhd_c_ina_c3': ,\n", + " 'adultadhd25': ,\n", + " 'adhd_f_adult': ,\n", + " 'childadhd11': ,\n", + " 'childadhd29': ,\n", + " 'childadhd17': ,\n", + " 'adultadhd8': ,\n", + " 'childadhd3': ,\n", + " 'adultadhd37': ,\n", + " 'childadhd37': ,\n", + " 'adultadhd34': ,\n", + " 'adhd7': ,\n", + " 'adhd6': ,\n", + " 'adhd3': ,\n", + " 'adhd8': ,\n", + " 'adhd5': ,\n", + " 'adhd1': ,\n", + " 'adhd4': ,\n", + " 'adhd11': ,\n", + " 'adhd10': ,\n", + " 'adhd9': ,\n", + " 'adhd2': ,\n", + " 'researchdb': ,\n", + " 'mriseq': ,\n", + " 'flag_reason': ,\n", + " 'dq_reason': ,\n", + " 'mriseq2': ,\n", + " 'switchptid': ,\n", + " 'status': ,\n", + " 'participant_id': ,\n", + " 'controlstatus': ,\n", + " 'ant_cc_mn_ac': ,\n", + " 'ant_in_mn_rt': ,\n", + " 'ant_in_trials': ,\n", + " 'ant_nc_mn_rt': ,\n", + " 'ant_ii_mn_ac': ,\n", + " 'ant_mean_rtinc': ,\n", + " 'ant_cn_trials': ,\n", + " 'ant_cc_trials': ,\n", + " 'ant_in_std_rt': ,\n", + " 'ant_mean_acccomerrneu': ,\n", + " 'ant_nc_std_ac': ,\n", + " 'ant_sd_rtinc': ,\n", + " 'ant_mean_accomierrcon': ,\n", + " 'ant_median_rtcon': ,\n", + " 'ant_mean_rtcon': ,\n", + " 'ant_ci_mn_ac': ,\n", + " 'ant_nn_trials': ,\n", + " 'ant_mean_acccomerrinc': ,\n", + " 'ant_nc_std_rt': ,\n", + " 'ant_median_rtinc': ,\n", + " 'ant_ii_trials': ,\n", + " 'ant_sd_rtcon': ,\n", + " 'ant_cn_std_ac': ,\n", + " 'ant_mean_rtneu': ,\n", + " 'ant_ic_mn_ac': ,\n", + " 'ant_ii_std_ac': ,\n", + " 'ant_median_accinc': ,\n", + " 'ant_nc_mn_ac': ,\n", + " 'ant_nn_mn_ac': ,\n", + " 'ant_ic_trials': ,\n", + " 'ant_cn_mn_ac': ,\n", + " 'ant_ci_trials': ,\n", + " 'ant_nn_std_rt': ,\n", + " 'ant_mean_acccomerrcon': ,\n", + " 'ant_cc_std_rt': ,\n", + " 'ant_nn_std_ac': ,\n", + " 'ant_median_rtneu': ,\n", + " 'ant_median_acccon': ,\n", + " 'ant_ni_mn_rt': ,\n", + " 'ant_ni_std_rt': ,\n", + " 'ant_ni_std_ac': ,\n", + " 'ant_nn_mn_rt': ,\n", + " 'ant_ic_mn_rt': ,\n", + " 'ant_conflict_acc_effect': ,\n", + " 'ant_sd_rtneu': ,\n", + " 'ant_in_std_ac': ,\n", + " 'ant_ci_mn_rt': ,\n", + " 'ant_ni_trials': ,\n", + " 'ant_cn_mn_rt': ,\n", + " 'ant_mean_accomierrinc': ,\n", + " 'ant_ii_mn_rt': ,\n", + " 'ant_cn_std_rt': ,\n", + " 'ant_ci_std_rt': ,\n", + " 'ant_in_mn_ac': ,\n", + " 'ant_conflict_rt_effect': ,\n", + " 'ant_cc_mn_rt': ,\n", + " 'ant_nc_trials': ,\n", + " 'ant_ic_std_rt': ,\n", + " 'ant_median_accneu': ,\n", + " 'ant_mean_accomierrneu': ,\n", + " 'ant_ni_mn_ac': ,\n", + " 'ant_ic_std_ac': ,\n", + " 'ant_ii_std_rt': ,\n", + " 'ant_ci_std_ac': ,\n", + " 'ant_cc_std_ac': ,\n", + " 'overactive': ,\n", + " 'organize': ,\n", + " 'asrs_score': ,\n", + " 'finaldetail': ,\n", + " 'asrs_flag': ,\n", + " 'asrs_exclusionscore': ,\n", + " 'remappointment': ,\n", + " 'aviodstart': ,\n", + " 'fidget': ,\n", + " 'barratt18': ,\n", + " 'bis_2npimp': ,\n", + " 'bis_parcel10': ,\n", + " 'barratt22': ,\n", + " 'barratt1': ,\n", + " 'bis_parcel3': ,\n", + " 'bis_parcel4': ,\n", + " 'bis_1atten': ,\n", + " 'barratt28': ,\n", + " 'barratt21': ,\n", + " 'barratt17': ,\n", + " 'barratt25': ,\n", + " 'barratt30': ,\n", + " 'barratt20': ,\n", + " 'bis_parcel1': ,\n", + " 'barratt5': ,\n", + " 'barratt23': ,\n", + " 'barratt14': ,\n", + " 'bis_briefbis': ,\n", + " 'barratt13': ,\n", + " 'bis_1cogcom': ,\n", + " 'bis_1sc': ,\n", + " 'bis_factor2': ,\n", + " 'barratt7': ,\n", + " 'bis_parcel6': ,\n", + " 'barratt10': ,\n", + " 'bis_parcel8': ,\n", + " 'bis_2attimp': ,\n", + " 'bis_parcel5': ,\n", + " 'barratt27': ,\n", + " 'barratt16': ,\n", + " 'bis_factor2_bi': ,\n", + " 'barratt4': ,\n", + " 'bis_parcel2': ,\n", + " 'bis_parcel7': ,\n", + " 'barratt26': ,\n", + " 'bis_1coginst': ,\n", + " 'barratt11': ,\n", + " 'bis_factor1_ci': ,\n", + " 'bis_factor1': ,\n", + " 'barratt15': ,\n", + " 'barratt12': ,\n", + " 'bis_parcel9': ,\n", + " 'barratt2': ,\n", + " 'barratt29': ,\n", + " 'bis_2motimp': ,\n", + " 'bis_parcel11': ,\n", + " 'bis_1pers': ,\n", + " 'barratt19': ,\n", + " 'bis_1mot': ,\n", + " 'barratt8': ,\n", + " 'barratt24': ,\n", + " 'barratt9': ,\n", + " 'barratt6': ,\n", + " 'barratt3': ,\n", + " 'bart_coefvar': ,\n", + " 'bart_ratiomeanredtoblueadjpumps': ,\n", + " 'bart_meanrtred': ,\n", + " 'bart_meanblueadjustedpumps': ,\n", + " 'bart_meanrtblue': ,\n", + " 'bart_sdrt': ,\n", + " 'bart_blueexplosions': ,\n", + " 'bart_quart1blueadjustedpumps': ,\n", + " 'bart_meanrt': ,\n", + " 'bart_meanredafterexpl': ,\n", + " 'bart_meanadjustedpumps': ,\n", + " 'bart_quart3redadjustedpumps': ,\n", + " 'bart_quart1redadjustedpumps': ,\n", + " 'bart_meanredadjustedpumps': ,\n", + " 'bart_cashoutwopump': ,\n", + " 'bart_quart4redadjustedpumps': ,\n", + " 'bart_totaladjustedpumps': ,\n", + " 'bart_meanblueafterexpl': ,\n", + " 'bart_redexplosions': ,\n", + " 'bart_sdblueadjustedpumps': ,\n", + " 'bart_sdadjustedpumps': ,\n", + " 'bart_quart3blueadjustedpumps': ,\n", + " 'bart_quart4blueadjustedpumps': ,\n", + " 'bart_quart2redadjustedpumps': ,\n", + " 'bart_coefvarred': ,\n", + " 'bart_medianrt': ,\n", + " 'bart_quart2blueadjustedpumps': ,\n", + " 'bart_totalpointssession': ,\n", + " 'bart_coefvarblue': ,\n", + " 'bart_sdredadjustedpumps': ,\n", + " 'bart_trialcomp': ,\n", + " 'bipollarii_mood': ,\n", + " 'bipolarii22': ,\n", + " 'bipolarii1': ,\n", + " 'bipolarii30': ,\n", + " 'bipolarii26': ,\n", + " 'bipollarii_daydreaming': ,\n", + " 'bipolarii28': ,\n", + " 'bipolarii2': ,\n", + " 'bipolarii5': ,\n", + " 'bipolarii29': ,\n", + " 'bipolarii6': ,\n", + " 'bipolarii20': ,\n", + " 'bipolarii31': ,\n", + " 'bipolarii18': ,\n", + " 'bipolarii16': ,\n", + " 'bipolarii27': ,\n", + " 'bipolarii24': ,\n", + " 'bipolarii3': ,\n", + " 'bipolarii12': ,\n", + " 'bipolarii19': ,\n", + " 'bipolarii25': ,\n", + " 'bipolarii8': ,\n", + " 'bipolarii4': ,\n", + " 'bipolarii13': ,\n", + " 'bipollarii_sumscore': ,\n", + " 'bipolarii21': ,\n", + " 'bipolarii15': ,\n", + " 'bipolarii14': ,\n", + " 'bipolarii7': ,\n", + " 'bipolarii23': ,\n", + " 'bipolarii17': ,\n", + " 'bipolarii9': ,\n", + " 'bipolarii10': ,\n", + " 'bipollarii_energy': ,\n", + " 'bipollarii_anxiety': ,\n", + " 'bipolarii11': ,\n", + " 'bprs1': ,\n", + " 'bprs24': ,\n", + " 'bprs20': ,\n", + " 'bprs6': ,\n", + " 'assessqother': ,\n", + " 'bprs_positive': ,\n", + " 'bprs13': ,\n", + " 'bprs14': ,\n", + " 'bprs21': ,\n", + " 'bprs8': ,\n", + " 'bprs12': ,\n", + " 'bprs17': ,\n", + " 'bprs2': ,\n", + " 'bprs22': ,\n", + " 'bprs4': ,\n", + " 'assessqrapport': ,\n", + " 'assessquncooprative': ,\n", + " 'bprs23': ,\n", + " 'bprs15': ,\n", + " 'bprs_negative': ,\n", + " 'bprs_mania': ,\n", + " 'assessqdisorder': ,\n", + " 'bprs10': ,\n", + " 'bprs19': ,\n", + " 'bprs7': ,\n", + " 'bprs5': ,\n", + " 'bprs16': ,\n", + " 'bprs3': ,\n", + " 'srcrelatives': ,\n", + " 'assessqsymptom': ,\n", + " 'bprs11': ,\n", + " 'confidencassess': ,\n", + " 'bprs9': ,\n", + " 'bprs_depanx': ,\n", + " 'bprs18': ,\n", + " 'srcprofessional': ,\n", + " 'srcchart': ,\n", + " 'srcpatient': ,\n", + " 'srcother': ,\n", + " 'chaphypo33': ,\n", + " 'chaphypo32': ,\n", + " 'chaphypo48': ,\n", + " 'chaphypo9': ,\n", + " 'chaphypo_total': ,\n", + " 'chaphypo11': ,\n", + " 'chaphypo13': ,\n", + " 'chaphypo44': ,\n", + " 'chaphypo18': ,\n", + " 'chaphypo45': ,\n", + " 'chaphypo1': ,\n", + " 'chaphypo27': ,\n", + " 'chaphypo34': ,\n", + " 'chaphypo29': ,\n", + " 'chaphypo4': ,\n", + " 'chaphypo20': ,\n", + " 'chaphypo25': ,\n", + " 'chaphypo40': ,\n", + " 'chaphypo43': ,\n", + " 'chaphypo46': ,\n", + " 'chaphypo10': ,\n", + " 'chaphypo21': ,\n", + " 'chaphypo28': ,\n", + " 'chaphypo42': ,\n", + " 'chaphypo41': ,\n", + " 'chaphypo12': ,\n", + " 'chaphypo17': ,\n", + " 'chaphypo6': ,\n", + " 'chaphypo16': ,\n", + " 'chaphypo24': ,\n", + " 'chaphypo31': ,\n", + " 'chaphypo26': ,\n", + " 'chaphypo2': ,\n", + " 'chaphypo7': ,\n", + " 'chaphypo37': ,\n", + " 'chaphypo35': ,\n", + " 'chaphypo14': ,\n", + " 'chaphypo3': ,\n", + " 'chaphypo22': ,\n", + " 'chaphypo19': ,\n", + " 'chaphypo38': ,\n", + " 'chaphypo30': ,\n", + " 'chaphypo39': ,\n", + " 'chaphypo36': ,\n", + " 'chaphypo15': ,\n", + " 'chaphypo23': ,\n", + " 'chaphypo47': ,\n", + " 'chaphypo5': ,\n", + " 'chaphypo8': ,\n", + " 'chapinf5': ,\n", + " 'chapinf6': ,\n", + " 'chapinf10': ,\n", + " 'chapinf3': ,\n", + " 'chapinf11': ,\n", + " 'chapinf8': ,\n", + " 'chapinf1': ,\n", + " 'chapinf_total': ,\n", + " 'chapinf13': ,\n", + " 'chapinf12': ,\n", + " 'chapinf2': ,\n", + " 'chapinf9': ,\n", + " 'chapinf4': ,\n", + " 'chapinf7': ,\n", + " 'chapper8': ,\n", + " 'chapper_total': ,\n", + " 'chapper21': ,\n", + " 'chapper12': ,\n", + " 'chapper35': ,\n", + " 'chapper3': ,\n", + " 'chapper25': ,\n", + " 'chapper13': ,\n", + " 'chapper31': ,\n", + " 'chapper7': ,\n", + " 'chapper5': ,\n", + " 'chapper11': ,\n", + " 'chapper2': ,\n", + " 'chapper20': ,\n", + " 'chapper14': ,\n", + " 'chapper34': ,\n", + " 'chapper30': ,\n", + " 'chapper28': ,\n", + " 'chapper22': ,\n", + " 'chapper29': ,\n", + " 'chapper6': ,\n", + " 'chapper18': ,\n", + " 'chapper9': ,\n", + " 'chapper15': ,\n", + " 'chapper26': ,\n", + " 'chapper27': ,\n", + " 'chapper33': ,\n", + " 'chapper32': ,\n", + " 'chapper23': ,\n", + " 'chapper17': ,\n", + " 'chapper19': ,\n", + " 'chapper16': ,\n", + " 'chapper1': ,\n", + " 'chapper10': ,\n", + " 'chapper4': ,\n", + " 'chapper24': ,\n", + " 'chapphy60': ,\n", + " 'chapphy17': ,\n", + " 'chapphy20': ,\n", + " 'chapphy13': ,\n", + " 'chapphy51': ,\n", + " 'chapphy21': ,\n", + " 'chapphy55': ,\n", + " 'chapphy61': ,\n", + " 'chapphy8': ,\n", + " 'chapphy54': ,\n", + " 'chapphy5': ,\n", + " 'chapphy26': ,\n", + " 'chapphy42': ,\n", + " 'chapphy14': ,\n", + " 'chapphy36': ,\n", + " 'chapphy24': ,\n", + " 'chapphy34': ,\n", + " 'chapphy6': ,\n", + " 'chapphy48': ,\n", + " 'chapphy47': ,\n", + " 'chapphy23': ,\n", + " 'chapphy58': ,\n", + " 'chapphy22': ,\n", + " 'chapphy2': ,\n", + " 'chapphy31': ,\n", + " 'chapphy59': ,\n", + " 'chapphy32': ,\n", + " 'chapphy28': ,\n", + " 'chapphy10': ,\n", + " 'chapphy37': ,\n", + " 'chapphy45': ,\n", + " 'chapphy35': ,\n", + " 'chapphy12': ,\n", + " 'chapphy19': ,\n", + " 'chapphy9': ,\n", + " 'chapphy18': ,\n", + " 'chapphy7': ,\n", + " 'chapphy49': ,\n", + " 'chapphy33': ,\n", + " 'chapphy25': ,\n", + " 'chapphy50': ,\n", + " 'chapphy56': ,\n", + " 'chapphy38': ,\n", + " 'chapphy44': ,\n", + " 'chapphy40': ,\n", + " 'chapphy53': ,\n", + " 'chapphy1': ,\n", + " 'chapphy11': ,\n", + " 'chapphy16': ,\n", + " 'chapphy46': ,\n", + " 'chapphy27': ,\n", + " 'chapphy43': ,\n", + " 'chapphy29': ,\n", + " 'chapphy30': ,\n", + " 'chapphy3': ,\n", + " 'chapphy39': ,\n", + " 'chapphy4': ,\n", + " 'chapphy15': ,\n", + " 'chapphy41': ,\n", + " 'chapphy57': ,\n", + " 'chapphy52': ,\n", + " 'chapphy_total': ,\n", + " 'chapsoc31': ,\n", + " 'chapsoc6': ,\n", + " 'chapsoc30': ,\n", + " 'chapsoc17': ,\n", + " 'chapsoc34': ,\n", + " 'chapsoc11': ,\n", + " 'chapsoc2': ,\n", + " 'chapsoc4': ,\n", + " 'chapsoc13': ,\n", + " 'chapsoc_total': ,\n", + " 'chapsoc27': ,\n", + " 'chapsoc9': ,\n", + " 'chapsoc29': ,\n", + " 'chapsoc22': ,\n", + " 'chapsoc7': ,\n", + " 'chapsoc8': ,\n", + " 'chapsoc32': ,\n", + " 'chapsoc18': ,\n", + " 'chapsoc20': ,\n", + " 'chapsoc21': ,\n", + " 'chapsoc15': ,\n", + " 'chapsoc5': ,\n", + " 'chapsoc24': ,\n", + " 'chapsoc14': ,\n", + " 'chapsoc38': ,\n", + " 'chapsoc23': ,\n", + " 'chapsoc37': ,\n", + " 'chapsoc26': ,\n", + " 'chapsoc40': ,\n", + " 'chapsoc28': ,\n", + " 'chapsoc36': ,\n", + " 'chapsoc3': ,\n", + " 'chapsoc35': ,\n", + " 'chapsoc33': ,\n", + " 'chapsoc1': ,\n", + " 'chapsoc16': ,\n", + " 'chapsoc39': ,\n", + " 'chapsoc19': ,\n", + " 'chapsoc12': ,\n", + " 'chapsoc25': ,\n", + " 'chapsoc10': ,\n", + " 'sis5': ,\n", + " 'sis7': ,\n", + " 'frmnslp': ,\n", + " 'bro6': ,\n", + " 'present': ,\n", + " 'bro4': ,\n", + " 'dad': ,\n", + " 'frmnup': ,\n", + " 'fralarm': ,\n", + " 'wkmnup': ,\n", + " 'sis2': ,\n", + " 'wkalarm': ,\n", + " 'numbro': ,\n", + " 'bro3': ,\n", + " 'wkmnnap': ,\n", + " 'regsch': ,\n", + " 'sis1': ,\n", + " 'sis6': ,\n", + " 'frdark': ,\n", + " 'frhr': ,\n", + " 'dyflsch': ,\n", + " 'frlight': ,\n", + " 'bro1': ,\n", + " 'frmn': ,\n", + " 'sis4': ,\n", + " 'bro5': ,\n", + " 'wknap': ,\n", + " 'sis3': ,\n", + " 'numsis': ,\n", + " 'bro7': ,\n", + " 'bro2': ,\n", + " 'partner': ,\n", + " 'frmnnap': ,\n", + " 'frprnts': ,\n", + " 'child': ,\n", + " 'frnap': ,\n", + " 'wkmnslp': ,\n", + " 'wkmn': ,\n", + " 'mom': ,\n", + " 'frprntslp': ,\n", + " 'teen': ,\n", + " 'wkhr': ,\n", + " 'crt_pr2': ,\n", + " 'crt_err2': ,\n", + " 'crt_time2': ,\n", + " 'crt_pr1': ,\n", + " 'crt_nm2': ,\n", + " 'crt_nm1': ,\n", + " 'crt_time1': ,\n", + " 'crt_err1': ,\n", + " 'crt_index': ,\n", + " 'crt_ne2': ,\n", + " 'plate14purple': ,\n", + " 'plate5': ,\n", + " 'plate13': ,\n", + " 'plate2': ,\n", + " 'plate14red': ,\n", + " 'plate1': ,\n", + " 'la2kcolor_colordeficiency': ,\n", + " 'plate4': ,\n", + " 'plate9': ,\n", + " 'plate8': ,\n", + " 'plate11': ,\n", + " 'plate3': ,\n", + " 'plate12': ,\n", + " 'la2kcolor_nottrace': ,\n", + " 'la2kcolor_nox': ,\n", + " 'plate6': ,\n", + " 'plate7': ,\n", + " 'plate10': ,\n", + " 'cpt_md_h_750': ,\n", + " 'cpt_hits': ,\n", + " 'cpt_sd_h_3750': ,\n", + " 'cpt_sd_h': ,\n", + " 'cpt_mn_h_3750': ,\n", + " 'cpt_mn_h_750': ,\n", + " 'cpt_fa': ,\n", + " 'cpt_md_h_1750': ,\n", + " 'cpt_mn_h_1750': ,\n", + " 'cpt_sd_h_1750': ,\n", + " 'cpt_sd_h_750': ,\n", + " 'cpt_mn_h': ,\n", + " 'cpt_inh_cnt_750': ,\n", + " 'cpt_inh_cnt_3750': ,\n", + " 'cpt_md_h': ,\n", + " 'cpt_miss': ,\n", + " 'cpt_inh_cnt_1750': ,\n", + " 'cpt_md_h_3750': ,\n", + " 'cvlt_cor3': ,\n", + " 'cvltz_13': ,\n", + " 'cvlt_cor2': ,\n", + " 'cvlt_tr': ,\n", + " 'cvltz_1': ,\n", + " 'cvlt_cor4': ,\n", + " 'cvlt_ti': ,\n", + " 'cvlt_bf': ,\n", + " 'cvlt_ls': ,\n", + " 'cvlt_cor5': ,\n", + " 'cvltz_16': ,\n", + " 'cvltz_4': ,\n", + " 'cvlt_ldf': ,\n", + " 'cvlt_cri': ,\n", + " 'cvltz_7': ,\n", + " 'cvlt_ldc': ,\n", + " 'cvlt_ldh': ,\n", + " 'cvltz_3': ,\n", + " 'cvltz_2': ,\n", + " 'cvltz_12': ,\n", + " 'cvltz_17': ,\n", + " 'cvltz_15': ,\n", + " 'cvlt_ind2': ,\n", + " 'cvltz_9': ,\n", + " 'cvltz_5': ,\n", + " 'cvlt_fri': ,\n", + " 'cvlt_ldfp': ,\n", + " 'cvltz_6': ,\n", + " 'cvlt_rd': ,\n", + " 'cvlt_sdc': ,\n", + " 'cvlt_totcor': ,\n", + " 'cvltz_10': ,\n", + " 'cvltz_11': ,\n", + " 'cvltz_19': ,\n", + " 'cvlt_ind1': ,\n", + " 'cvltz_8': ,\n", + " 'cvlt_sdf': ,\n", + " 'cvltz_18': ,\n", + " 'cvlt_cor1': ,\n", + " 'cvltz_14': ,\n", + " 'cigs_mons': ,\n", + " 'school_yrs': ,\n", + " 'language2': ,\n", + " 'cigs': ,\n", + " 'race_1': ,\n", + " 'race_2': ,\n", + " 'religion': ,\n", + " 'civil_stat': ,\n", + " 'cigs_pack': ,\n", + " 'race_3': ,\n", + " 'school_degree': ,\n", + " 'adopt': ,\n", + " 'marriage_num': ,\n", + " 'sexuality': ,\n", + " 'sexuality_opt': ,\n", + " 'cigs_yrs': ,\n", + " 'age': ,\n", + " 'cigs_cigs': ,\n", + " 'race_main': ,\n", + " 'gender': ,\n", + " 'residence': ,\n", + " 'ethnicity': ,\n", + " 'language1': ,\n", + " 'children_num': ,\n", + " 'cigs_past': ,\n", + " 'school_back': ,\n", + " 'dick14': ,\n", + " 'dick5': ,\n", + " 'dick40': ,\n", + " 'func_pos': ,\n", + " 'dick20': ,\n", + " 'dick3': ,\n", + " 'dick1': ,\n", + " 'dick41': ,\n", + " 'dick19': ,\n", + " 'dick8': ,\n", + " 'dick46': ,\n", + " 'dysfunc_neg': ,\n", + " 'dick23': ,\n", + " 'dick31': ,\n", + " 'dick16': ,\n", + " 'dick32': ,\n", + " 'dick15': ,\n", + " 'dick21': ,\n", + " 'dick45': ,\n", + " 'dick6': ,\n", + " 'dick44': ,\n", + " 'dick12': ,\n", + " 'dick35': ,\n", + " 'dick2': ,\n", + " 'dick24': ,\n", + " 'dysfunc_pos': ,\n", + " 'dick29': ,\n", + " 'dick11': ,\n", + " 'dick39': ,\n", + " 'dick38': ,\n", + " 'dysfunc_total': ,\n", + " 'dick9': ,\n", + " 'dick37': ,\n", + " 'dick13': ,\n", + " 'dick42': ,\n", + " 'dick34': ,\n", + " 'dick28': ,\n", + " 'dick33': ,\n", + " 'dick30': ,\n", + " 'dick18': ,\n", + " 'func_total': ,\n", + " 'dick26': ,\n", + " 'func_neg': ,\n", + " 'dick22': ,\n", + " 'dick25': ,\n", + " 'dick7': ,\n", + " 'dick27': ,\n", + " 'dick36': ,\n", + " 'dick4': ,\n", + " 'dick17': ,\n", + " 'dick10': ,\n", + " 'dick43': ,\n", + " 'ddt_md_rt': ,\n", + " 'ddt_medium_incon': ,\n", + " 'ddt_log_large_k': ,\n", + " 'ddt_large_incon': ,\n", + " 'ddt_large_k': ,\n", + " 'ddt_medium_k': ,\n", + " 'ddt_mn_rt': ,\n", + " 'ddt_sd_rt': ,\n", + " 'ddt_small_k': ,\n", + " 'ddt_total_k': ,\n", + " 'ddt_log_small_k': ,\n", + " 'ddt_items7_typo': ,\n", + " 'ddt_log_total_k': ,\n", + " 'ddt_small_incon': ,\n", + " 'ddt_log_medium_k': ,\n", + " 'etotal': ,\n", + " 'srep': ,\n", + " 'a_two': ,\n", + " 'a_four': ,\n", + " 'f_three': ,\n", + " 'fsle': ,\n", + " 'frep': ,\n", + " 's_total': ,\n", + " 'asle': ,\n", + " 'e': ,\n", + " 's_two': ,\n", + " 'arep': ,\n", + " 'a_one': ,\n", + " 'c': ,\n", + " 'total_rep': ,\n", + " 'f_total': ,\n", + " 's_three': ,\n", + " 'a_three': ,\n", + " 'f_four': ,\n", + " 's_four': ,\n", + " 'ssle': ,\n", + " 'total_sle': ,\n", + " 's_one': ,\n", + " 'f_one': ,\n", + " 'a_total': ,\n", + " 'f_two': ,\n", + " 'm_four': ,\n", + " 'm_two': ,\n", + " 'rsle': ,\n", + " 'r_three': ,\n", + " 'r_four': ,\n", + " 'prep': ,\n", + " 'msle': ,\n", + " 'r_one': ,\n", + " 'p_four': ,\n", + " 'm_three': ,\n", + " 'mrep': ,\n", + " 'p_two': ,\n", + " 'spantotalsle': ,\n", + " 'spantotalrep': ,\n", + " 'psle': ,\n", + " 'dkefss_e': ,\n", + " 'dkefss_c': ,\n", + " 'ptotalwords': ,\n", + " 'p_three': ,\n", + " 'rrep': ,\n", + " 'm_one': ,\n", + " 'r_two': ,\n", + " 'mtotalwords': ,\n", + " 'dkefss_stotal': ,\n", + " 'p_one': ,\n", + " 'rtotalwords': ,\n", + " 'eysenck36': ,\n", + " 'eysenck47': ,\n", + " 'eysenck26': ,\n", + " 'eysenck43': ,\n", + " 'eysenck52': ,\n", + " 'eysenck49': ,\n", + " 'eysenck35': ,\n", + " 'eysenck40': ,\n", + " 'eysenck37': ,\n", + " 'eysenck50': ,\n", + " 'eysenck28': ,\n", + " 'eysenck24': ,\n", + " 'eysenck45': ,\n", + " 'eysenck17': ,\n", + " 'eysenck12': ,\n", + " 'eysenck13': ,\n", + " 'eysenck7': ,\n", + " 'eysenck42': ,\n", + " 'eysenck4': ,\n", + " 'eysenck33': ,\n", + " 'eysenck21': ,\n", + " 'eysenck14': ,\n", + " 'eysenck34': ,\n", + " 'eysenck8': ,\n", + " 'eysenck29': ,\n", + " 'scorev': ,\n", + " 'eysenck54': ,\n", + " 'eysenck38': ,\n", + " 'eysenck31': ,\n", + " 'eysenck19': ,\n", + " 'eysenck27': ,\n", + " 'eysenck15': ,\n", + " 'eysenck5': ,\n", + " 'eysenck25': ,\n", + " 'eysenck51': ,\n", + " 'eysenck9': ,\n", + " 'eysenck6': ,\n", + " 'scoree': ,\n", + " 'eysenck10': ,\n", + " 'eysenck32': ,\n", + " 'eysenck30': ,\n", + " 'eysenck46': ,\n", + " 'eysenck20': ,\n", + " 'eysenck1': ,\n", + " 'eysenck48': ,\n", + " 'eysenck53': ,\n", + " 'eysenck16': ,\n", + " 'eysenck23': ,\n", + " 'eysenck3': ,\n", + " 'eysenck39': ,\n", + " 'eysenck44': ,\n", + " 'eysenck22': ,\n", + " 'eysenck41': ,\n", + " 'eysenck11': ,\n", + " 'eysenck2': ,\n", + " 'eysenck18': ,\n", + " 'scorei': ,\n", + " 'golden3': ,\n", + " 'golden_sumscore': ,\n", + " 'golden4': ,\n", + " 'golden5': ,\n", + " 'golden1': ,\n", + " 'golden6': ,\n", + " 'golden7': ,\n", + " 'golden2': ,\n", + " 'hamilton23': ,\n", + " 'hamilton17': ,\n", + " 'hamilton24': ,\n", + " 'hamilton4': ,\n", + " 'hamilton13': ,\n", + " 'hamilton28': ,\n", + " 'hamilton27': ,\n", + " 'hamd_28': ,\n", + " 'hamilton3': ,\n", + " 'hamilton8': ,\n", + " 'hamilton2': ,\n", + " 'hamilton15': ,\n", + " 'hamilton14': ,\n", + " 'hamilton7': ,\n", + " 'hamilton20': ,\n", + " 'hamilton6': ,\n", + " 'hamd_21': ,\n", + " 'hamilton12': ,\n", + " 'hamd_17': ,\n", + " 'hamilton10': ,\n", + " 'hamilton9': ,\n", + " 'hamilton11': ,\n", + " 'hamilton21': ,\n", + " 'hamilton5': ,\n", + " 'hamilton25': ,\n", + " 'hamilton16b': ,\n", + " 'hamilton26': ,\n", + " 'hamilton1': ,\n", + " 'hamilton19': ,\n", + " 'hamilton18a': ,\n", + " 'hamilton18b': ,\n", + " 'hamilton22': ,\n", + " 'hamilton16a': ,\n", + " 'hand4': ,\n", + " 'hand2': ,\n", + " 'hand6': ,\n", + " 'hand7': ,\n", + " 'hand1': ,\n", + " 'leg': ,\n", + " 'handscore': ,\n", + " 'hand10': ,\n", + " 'hand3': ,\n", + " 'hand5': ,\n", + " 'hand9': ,\n", + " 'hand8': ,\n", + " 'eye': ,\n", + " 'rightscore': ,\n", + " 'leftscore': ,\n", + " 'la2khealth18': ,\n", + " 'la2khealth18_lost': ,\n", + " 'ht_ft': ,\n", + " 'la2khealth10': ,\n", + " 'ht_in': ,\n", + " 'la2khealth16': ,\n", + " 'la2khealth19': ,\n", + " 'la2khealth1': ,\n", + " 'la2khealth8': ,\n", + " 'la2khealth6': ,\n", + " 'ht': ,\n", + " 'la2khealth14': ,\n", + " 'la2khealth15': ,\n", + " 'la2khealth7': ,\n", + " 'la2khealth17': ,\n", + " 'la2khealth14s': ,\n", + " 'bmi': ,\n", + " 'la2khealth21': ,\n", + " 'la2khealth9': ,\n", + " 'wt': ,\n", + " 'la2khealth4': ,\n", + " 'la2khealth11': ,\n", + " 'la2khealth_score': ,\n", + " 'la2khealth20': ,\n", + " 'la2khealth3': ,\n", + " 'la2khealth18_gain': ,\n", + " 'la2khealth5': ,\n", + " 'la2khealth12': ,\n", + " 'la2khealth13': ,\n", + " 'la2khealth2': ,\n", + " 'hopkins2': ,\n", + " 'hopkins12': ,\n", + " ...}" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "layout.entities" ] @@ -222,11 +2584,289 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "['/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10159/func/sub-10159_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10171/func/sub-10171_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10189/func/sub-10189_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10206/func/sub-10206_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10217/func/sub-10217_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10225/func/sub-10225_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10227/func/sub-10227_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10228/func/sub-10228_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10235/func/sub-10235_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10249/func/sub-10249_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10269/func/sub-10269_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10271/func/sub-10271_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10273/func/sub-10273_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10274/func/sub-10274_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10280/func/sub-10280_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10290/func/sub-10290_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10292/func/sub-10292_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10299/func/sub-10299_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10304/func/sub-10304_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10316/func/sub-10316_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10321/func/sub-10321_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10325/func/sub-10325_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10329/func/sub-10329_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10339/func/sub-10339_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10340/func/sub-10340_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10345/func/sub-10345_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10347/func/sub-10347_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10356/func/sub-10356_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10361/func/sub-10361_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10365/func/sub-10365_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10376/func/sub-10376_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10377/func/sub-10377_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10388/func/sub-10388_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10428/func/sub-10428_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10429/func/sub-10429_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10438/func/sub-10438_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10440/func/sub-10440_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10448/func/sub-10448_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10455/func/sub-10455_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10460/func/sub-10460_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10471/func/sub-10471_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10478/func/sub-10478_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10487/func/sub-10487_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10492/func/sub-10492_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10501/func/sub-10501_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10506/func/sub-10506_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10517/func/sub-10517_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10523/func/sub-10523_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10524/func/sub-10524_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10525/func/sub-10525_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10527/func/sub-10527_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10530/func/sub-10530_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10557/func/sub-10557_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10565/func/sub-10565_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10570/func/sub-10570_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10575/func/sub-10575_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10624/func/sub-10624_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10629/func/sub-10629_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10631/func/sub-10631_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10638/func/sub-10638_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10668/func/sub-10668_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10672/func/sub-10672_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10674/func/sub-10674_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10678/func/sub-10678_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10680/func/sub-10680_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10686/func/sub-10686_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10692/func/sub-10692_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10696/func/sub-10696_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10697/func/sub-10697_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10704/func/sub-10704_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10707/func/sub-10707_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10708/func/sub-10708_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10719/func/sub-10719_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10724/func/sub-10724_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10746/func/sub-10746_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10762/func/sub-10762_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10779/func/sub-10779_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10785/func/sub-10785_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10788/func/sub-10788_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10844/func/sub-10844_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10855/func/sub-10855_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10871/func/sub-10871_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10877/func/sub-10877_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10882/func/sub-10882_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10891/func/sub-10891_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10893/func/sub-10893_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10912/func/sub-10912_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10934/func/sub-10934_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10940/func/sub-10940_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10949/func/sub-10949_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10958/func/sub-10958_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10963/func/sub-10963_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10968/func/sub-10968_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10971/func/sub-10971_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10975/func/sub-10975_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10977/func/sub-10977_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10987/func/sub-10987_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10998/func/sub-10998_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-11019/func/sub-11019_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-11030/func/sub-11030_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-11044/func/sub-11044_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-11050/func/sub-11050_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-11052/func/sub-11052_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-11059/func/sub-11059_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-11061/func/sub-11061_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-11062/func/sub-11062_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-11066/func/sub-11066_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-11067/func/sub-11067_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-11068/func/sub-11068_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-11077/func/sub-11077_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-11088/func/sub-11088_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-11090/func/sub-11090_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-11097/func/sub-11097_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-11098/func/sub-11098_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-11104/func/sub-11104_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-11105/func/sub-11105_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-11106/func/sub-11106_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-11108/func/sub-11108_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-11112/func/sub-11112_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-11121/func/sub-11121_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-11122/func/sub-11122_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-11128/func/sub-11128_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-11131/func/sub-11131_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-11142/func/sub-11142_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-11143/func/sub-11143_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-11149/func/sub-11149_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-11156/func/sub-11156_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-50004/func/sub-50004_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-50005/func/sub-50005_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-50006/func/sub-50006_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-50007/func/sub-50007_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-50008/func/sub-50008_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-50010/func/sub-50010_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-50013/func/sub-50013_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-50014/func/sub-50014_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-50015/func/sub-50015_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-50016/func/sub-50016_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-50020/func/sub-50020_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-50021/func/sub-50021_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-50022/func/sub-50022_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-50023/func/sub-50023_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-50025/func/sub-50025_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-50027/func/sub-50027_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-50029/func/sub-50029_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-50032/func/sub-50032_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-50033/func/sub-50033_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-50034/func/sub-50034_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-50035/func/sub-50035_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-50036/func/sub-50036_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-50038/func/sub-50038_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-50043/func/sub-50043_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-50047/func/sub-50047_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-50048/func/sub-50048_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-50049/func/sub-50049_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-50050/func/sub-50050_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-50051/func/sub-50051_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-50052/func/sub-50052_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-50053/func/sub-50053_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-50054/func/sub-50054_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-50055/func/sub-50055_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-50056/func/sub-50056_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-50058/func/sub-50058_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-50059/func/sub-50059_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-50060/func/sub-50060_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-50061/func/sub-50061_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-50064/func/sub-50064_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-50066/func/sub-50066_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-50067/func/sub-50067_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-50069/func/sub-50069_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-50073/func/sub-50073_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-50075/func/sub-50075_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-50076/func/sub-50076_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-50077/func/sub-50077_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-50080/func/sub-50080_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-50081/func/sub-50081_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-50083/func/sub-50083_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-50085/func/sub-50085_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-60001/func/sub-60001_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-60005/func/sub-60005_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-60006/func/sub-60006_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-60008/func/sub-60008_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-60010/func/sub-60010_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-60011/func/sub-60011_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-60012/func/sub-60012_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-60014/func/sub-60014_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-60015/func/sub-60015_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-60016/func/sub-60016_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-60017/func/sub-60017_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-60020/func/sub-60020_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-60021/func/sub-60021_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-60022/func/sub-60022_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-60028/func/sub-60028_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-60030/func/sub-60030_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-60033/func/sub-60033_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-60036/func/sub-60036_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-60037/func/sub-60037_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-60038/func/sub-60038_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-60042/func/sub-60042_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-60043/func/sub-60043_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-60045/func/sub-60045_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-60046/func/sub-60046_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-60048/func/sub-60048_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-60049/func/sub-60049_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-60051/func/sub-60051_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-60052/func/sub-60052_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-60053/func/sub-60053_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-60055/func/sub-60055_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-60056/func/sub-60056_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-60057/func/sub-60057_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-60060/func/sub-60060_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-60062/func/sub-60062_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-60065/func/sub-60065_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-60066/func/sub-60066_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-60068/func/sub-60068_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-60070/func/sub-60070_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-60072/func/sub-60072_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-60073/func/sub-60073_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-60074/func/sub-60074_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-60076/func/sub-60076_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-60077/func/sub-60077_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-60078/func/sub-60078_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-60079/func/sub-60079_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-60080/func/sub-60080_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-60084/func/sub-60084_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-60087/func/sub-60087_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-60089/func/sub-60089_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-70001/func/sub-70001_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-70004/func/sub-70004_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-70007/func/sub-70007_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-70010/func/sub-70010_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-70015/func/sub-70015_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-70017/func/sub-70017_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-70020/func/sub-70020_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-70021/func/sub-70021_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-70022/func/sub-70022_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-70026/func/sub-70026_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-70029/func/sub-70029_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-70033/func/sub-70033_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-70034/func/sub-70034_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-70035/func/sub-70035_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-70036/func/sub-70036_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-70037/func/sub-70037_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-70040/func/sub-70040_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-70046/func/sub-70046_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-70048/func/sub-70048_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-70049/func/sub-70049_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-70051/func/sub-70051_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-70052/func/sub-70052_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-70055/func/sub-70055_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-70057/func/sub-70057_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-70058/func/sub-70058_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-70060/func/sub-70060_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-70061/func/sub-70061_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-70065/func/sub-70065_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-70068/func/sub-70068_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-70069/func/sub-70069_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-70070/func/sub-70070_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-70072/func/sub-70072_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-70073/func/sub-70073_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-70074/func/sub-70074_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-70075/func/sub-70075_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-70076/func/sub-70076_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-70077/func/sub-70077_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-70079/func/sub-70079_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-70080/func/sub-70080_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-70081/func/sub-70081_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-70083/func/sub-70083_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-70086/func/sub-70086_task-rest_bold.nii.gz']" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "layout.get(datatype='func', suffix='bold', task='rest', extensions=['.nii.gz'], return_type='file')" + "layout.get(datatype=\"func\", suffix=\"bold\", task=\"rest\", extension=[\".nii.gz\"], return_type=\"file\")" ] }, { @@ -238,11 +2878,26 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "['/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10159/func/sub-10159_task-bart_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10159/func/sub-10159_task-rest_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10159/func/sub-10159_task-scap_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10159/func/sub-10159_task-stopsignal_bold.nii.gz',\n", + " '/Users/michael/projects/teaching/carpentries/SDC-BIDS-IntroMRI/data/ds000030/sub-10159/func/sub-10159_task-taskswitch_bold.nii.gz']" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "layout.get(subject='10159', RepetitionTime=2, return_type='file')" + "layout.get(subject=\"10159\", RepetitionTime=2, return_type=\"file\")" ] }, { @@ -254,11 +2909,100 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "{'AccelNumReferenceLines': 24,\n", + " 'AccelerationFactorPE': 2,\n", + " 'AcquisitionMatrix': '64/0/0/64',\n", + " 'CogAtlasID': 'trm_4d559bcd67c18',\n", + " 'CogPOID': '',\n", + " 'DeviceSerialNumber': '35343',\n", + " 'EPIFactor': 128,\n", + " 'EchoTime': 0.03,\n", + " 'EchoTrainLength': 1,\n", + " 'EffectiveEchoSpacing': 0.000395,\n", + " 'FlipAngle': 90,\n", + " 'ImageType': 'ORIGINAL/PRIMARY/M/ND/MOSAIC',\n", + " 'ImagingFrequency': 123249925,\n", + " 'InPlanePhaseEncodingDirection': 'COL',\n", + " 'Instructions': 'This task is the one where you score points by inflating balloons. You push the first button to inflate the balloon, and the second button to stop inflating and move on to the next one. The more you inflate the balloon the more points you’ll get, but if you inflate it too much the balloon will pop and you won’t get any points. There are two different colors of balloons, green and white. Green balloons give points, but white balloons don’t, so when you see a white balloon you can just inflate it until it goes away to move on to the next one. You only get a limited number of balloons, so try to get as many points as you can on each. Any questions?',\n", + " 'MRAcquisitionType': '2D',\n", + " 'MagneticFieldStrength': 3,\n", + " 'ManufacturerModelName': 'TrioTim',\n", + " 'NumberOfAverages': 1,\n", + " 'NumberOfPhaseEncodingSteps': 63,\n", + " 'PatientPosition': 'HFS',\n", + " 'PercentPhaseFieldOfView': 100,\n", + " 'PercentSampling': 100,\n", + " 'PhaseEncodingDirection': 'j-',\n", + " 'PixelBandwidth': 1420,\n", + " 'ProtocolName': 'BOLD - BART',\n", + " 'ReceiveCoilName': 'HeadMatrix',\n", + " 'RepetitionTime': 2,\n", + " 'ScanOptions': 'FS',\n", + " 'ScanningSequence': 'EP',\n", + " 'SequenceName': '*epfid2d1_64',\n", + " 'SequenceVariant': 'SK',\n", + " 'SliceTiming': [1.0025,\n", + " 0,\n", + " 1.0625,\n", + " 0.06,\n", + " 1.1225,\n", + " 0.1175,\n", + " 1.18,\n", + " 0.1775,\n", + " 1.24,\n", + " 0.235,\n", + " 1.3,\n", + " 0.295,\n", + " 1.3575,\n", + " 0.355,\n", + " 1.4175,\n", + " 0.4125,\n", + " 1.475,\n", + " 0.4725,\n", + " 1.535,\n", + " 0.53,\n", + " 1.595,\n", + " 0.59,\n", + " 1.6525,\n", + " 0.65,\n", + " 1.7125,\n", + " 0.7075,\n", + " 1.77,\n", + " 0.7675,\n", + " 1.83,\n", + " 0.8275,\n", + " 1.89,\n", + " 0.885,\n", + " 1.9475,\n", + " 0.945],\n", + " 'SoftwareVersions': 'syngo MR B15',\n", + " 'TaskDescription': 'In the BART (Lejuez et al., 2002), participants were allowed to pump a series of green (experimental) and white (control) balloons (Figure 1B). On each trial, participants chose to pump the balloon or cash out and collect their accumulated earnings for that round. For experimental balloons, after a trial in which the participant successfully pumped the balloon (meaning it did not result in an explosion), an image of a larger balloon was presented, the participant earned 5 points, and was able to pump again or cash-out. After a trial in which the participant chose to cash out, the participant’s accumulated earnings for that round were displayed and the task moved onto the next round. On an explosion trial (necessarily following a Risky choice trial), an exploded balloon was presented, the participant received no points for that round, and the task moved onto the next round. In this version of the BART, balloons exploded randomly on a number drawn from a uniform distribution over numbers of pumps, with 12 maximum pumps possible before an explosion or end of a round. Thus, participants experienced the probability as non-stationary, as the likelihood of a loss event increased with each trial in a round and as no information was provided to subjects about the probability of explosion. Participants also responded to control balloons, which increased in size on successive trials, but which neither resulted in points nor exploded. For both balloons (green and white), the balloon would disappear from the screen once the participant responded, and each balloon trial was separated by a jittered delay. An outcome trial (following a Cash-out choice or a Loss event) was displayed for a fixed duration of 2 s. Each trial was separated by a blank screen that was presented for a variable duration (1-2 s, average 1.5 s); each round was separated by a blank screen that was presented for variable duration (1-12 s, average 4 s). The task performed in the scanner was self-paced, but the task was programmed such that participants saw approximately 30 virtual balloons, with an approximate run time of 9 minutes. Each successful pump was worth 5 points, but participants did not collect their earnings at the end of the scan. For the practice run, participants had one minute to complete 5 balloon rounds.',\n", + " 'TaskFullName': 'Balloon Analog Risk Task (BART)',\n", + " 'TaskName': 'bart',\n", + " 'TaskParameters': {'ISI': 3,\n", + " 'ITI': 2,\n", + " 'mean_iti': 4,\n", + " 'min_iti': 1,\n", + " 'max_iti': 12,\n", + " 'trigger_time': 10.309},\n", + " 'TotalScanTimeSec': 542,\n", + " 'TransmitCoilName': 'Body',\n", + " 'VariableFlipAngleFlag': 'N'}" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "fmri_file = layout.get(subject='10159', RepetitionTime=2, return_type='file')[0]\n", + "fmri_file = layout.get(subject=\"10159\", RepetitionTime=2, return_type=\"file\")[0]\n", "layout.get_metadata(fmri_file)" ] }, @@ -271,14 +3015,441 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AccelNumReferenceLinesAccelerationFactorPEAcquisitionMatrixCogAtlasIDCogPOIDDeviceSerialNumberEPIFactorEchoTimeEchoTrainLengthEffectiveEchoSpacing...SequenceVariantSliceTimingSoftwareVersionsTaskDescriptionTaskFullNameTaskNameTaskParametersTotalScanTimeSecTransmitCoilNameVariableFlipAngleFlag
024.02.064/0/0/64trm_4d559bcd67c1835343128.00.0310.000395...SK[1.0025, 0, 1.0625, 0.06, 1.1225, 0.1175, 1.18...syngo MR B15In the BART (Lejuez et al., 2002), participant...Balloon Analog Risk Task (BART)bart{'ISI': 3, 'ITI': 2, 'mean_iti': 4, 'min_iti':...542.0BodyN
124.02.064/0/0/64trm_4c8a834779883COGPO_0008635343128.00.0310.000395...SK[1.005, 0, 1.0625, 0.06, 1.1225, 0.12, 1.1825,...syngo MR B15In the Resting scan, participants were asked t...Resting StaterestNaN312.0BodyN
224.02.064/0/0/64trm_4f2453b806fe135343128.00.0310.000395...SK[1.005, 0, 1.0625, 0.06, 1.1225, 0.1175, 1.18,...syngo MR B15SCAP is a working memory task that tests the m...Spatial Working Memory Capacity Tasks (SCAP)scap{'trigger_time': None}590.0BodyN
324.02.064/0/0/64tsk_4a57abb949e1a35343128.00.0310.000395...SK[1.0025, 0, 1.0625, 0.0575, 1.12, 0.1175, 1.18...syngo MR B15The Stop-Signal Task measures response inhibit...Stop-Signal Taskstopsignal{'Settings': {'BSI': 1, 'ISI': 1.5, 'Ladder1 s...376.0BodyN
424.02.064/0/0/64tsk_4a57abb949e8aCOGPO_0010735343128.00.0310.000395...SK[1.0025, 0, 1.0625, 0.0575, 1.12, 0.1175, 1.18...syngo MR B15In the Task-Switching (TS) task, participants ...Task Switchingtaskswitch{'button_set': 2, 'left_color': 'red', 'right_...424.0BodyN
..................................................................
199924.02.064/0/0/64trm_4c8991e6e8597COGPO_0007835426128.00.0310.000395...SK[1.0025, 0, 1.0625, 0.0575, 1.1225, 0.1175, 1....syngo MR B17This task was run as a part of the Consortium ...Paired Associates Memory Task - Retrievalpamret{'trigger_time': 8.2909}544.0BodyN
200024.02.064/0/0/64trm_4c8a834779883COGPO_0008635426128.00.0310.000395...SK[1.005, 0, 1.0625, 0.06, 1.1225, 0.12, 1.1825,...syngo MR B17In the Resting scan, participants were asked t...Resting StaterestNaN312.0BodyN
200124.02.064/0/0/64trm_4f2453b806fe135426128.00.0310.000395...SK[1.0025, 0, 1.0625, 0.06, 1.1225, 0.1175, 1.18...syngo MR B17SCAP is a working memory task that tests the m...Spatial Working Memory Capacity Tasks (SCAP)scap{'trigger_time': 8.2668}590.0BodyN
200224.02.064/0/0/64tsk_4a57abb949e1a35426128.00.0310.000395...SK[1.005, 0, 1.0625, 0.06, 1.1225, 0.1175, 1.182...syngo MR B17The Stop-Signal Task measures response inhibit...Stop-Signal Taskstopsignal{'Settings': {'BSI': 1, 'ISI': 1.5, 'Ladder1 s...376.0BodyN
200324.02.064/0/0/64tsk_4a57abb949e8aCOGPO_0010735426128.00.0310.000395...SK[1.005, 0, 1.0625, 0.06, 1.1225, 0.1175, 1.18,...syngo MR B17In the Task-Switching (TS) task, participants ...Task Switchingtaskswitch{'button_set': 4, 'left_color': 'green', 'righ...424.0BodyN
\n", + "

2004 rows × 41 columns

\n", + "
" + ], + "text/plain": [ + " AccelNumReferenceLines AccelerationFactorPE AcquisitionMatrix \\\n", + "0 24.0 2.0 64/0/0/64 \n", + "1 24.0 2.0 64/0/0/64 \n", + "2 24.0 2.0 64/0/0/64 \n", + "3 24.0 2.0 64/0/0/64 \n", + "4 24.0 2.0 64/0/0/64 \n", + "... ... ... ... \n", + "1999 24.0 2.0 64/0/0/64 \n", + "2000 24.0 2.0 64/0/0/64 \n", + "2001 24.0 2.0 64/0/0/64 \n", + "2002 24.0 2.0 64/0/0/64 \n", + "2003 24.0 2.0 64/0/0/64 \n", + "\n", + " CogAtlasID CogPOID DeviceSerialNumber EPIFactor EchoTime \\\n", + "0 trm_4d559bcd67c18 35343 128.0 0.03 \n", + "1 trm_4c8a834779883 COGPO_00086 35343 128.0 0.03 \n", + "2 trm_4f2453b806fe1 35343 128.0 0.03 \n", + "3 tsk_4a57abb949e1a 35343 128.0 0.03 \n", + "4 tsk_4a57abb949e8a COGPO_00107 35343 128.0 0.03 \n", + "... ... ... ... ... ... \n", + "1999 trm_4c8991e6e8597 COGPO_00078 35426 128.0 0.03 \n", + "2000 trm_4c8a834779883 COGPO_00086 35426 128.0 0.03 \n", + "2001 trm_4f2453b806fe1 35426 128.0 0.03 \n", + "2002 tsk_4a57abb949e1a 35426 128.0 0.03 \n", + "2003 tsk_4a57abb949e8a COGPO_00107 35426 128.0 0.03 \n", + "\n", + " EchoTrainLength EffectiveEchoSpacing ... SequenceVariant \\\n", + "0 1 0.000395 ... SK \n", + "1 1 0.000395 ... SK \n", + "2 1 0.000395 ... SK \n", + "3 1 0.000395 ... SK \n", + "4 1 0.000395 ... SK \n", + "... ... ... ... ... \n", + "1999 1 0.000395 ... SK \n", + "2000 1 0.000395 ... SK \n", + "2001 1 0.000395 ... SK \n", + "2002 1 0.000395 ... SK \n", + "2003 1 0.000395 ... SK \n", + "\n", + " SliceTiming SoftwareVersions \\\n", + "0 [1.0025, 0, 1.0625, 0.06, 1.1225, 0.1175, 1.18... syngo MR B15 \n", + "1 [1.005, 0, 1.0625, 0.06, 1.1225, 0.12, 1.1825,... syngo MR B15 \n", + "2 [1.005, 0, 1.0625, 0.06, 1.1225, 0.1175, 1.18,... syngo MR B15 \n", + "3 [1.0025, 0, 1.0625, 0.0575, 1.12, 0.1175, 1.18... syngo MR B15 \n", + "4 [1.0025, 0, 1.0625, 0.0575, 1.12, 0.1175, 1.18... syngo MR B15 \n", + "... ... ... \n", + "1999 [1.0025, 0, 1.0625, 0.0575, 1.1225, 0.1175, 1.... syngo MR B17 \n", + "2000 [1.005, 0, 1.0625, 0.06, 1.1225, 0.12, 1.1825,... syngo MR B17 \n", + "2001 [1.0025, 0, 1.0625, 0.06, 1.1225, 0.1175, 1.18... syngo MR B17 \n", + "2002 [1.005, 0, 1.0625, 0.06, 1.1225, 0.1175, 1.182... syngo MR B17 \n", + "2003 [1.005, 0, 1.0625, 0.06, 1.1225, 0.1175, 1.18,... syngo MR B17 \n", + "\n", + " TaskDescription \\\n", + "0 In the BART (Lejuez et al., 2002), participant... \n", + "1 In the Resting scan, participants were asked t... \n", + "2 SCAP is a working memory task that tests the m... \n", + "3 The Stop-Signal Task measures response inhibit... \n", + "4 In the Task-Switching (TS) task, participants ... \n", + "... ... \n", + "1999 This task was run as a part of the Consortium ... \n", + "2000 In the Resting scan, participants were asked t... \n", + "2001 SCAP is a working memory task that tests the m... \n", + "2002 The Stop-Signal Task measures response inhibit... \n", + "2003 In the Task-Switching (TS) task, participants ... \n", + "\n", + " TaskFullName TaskName \\\n", + "0 Balloon Analog Risk Task (BART) bart \n", + "1 Resting State rest \n", + "2 Spatial Working Memory Capacity Tasks (SCAP) scap \n", + "3 Stop-Signal Task stopsignal \n", + "4 Task Switching taskswitch \n", + "... ... ... \n", + "1999 Paired Associates Memory Task - Retrieval pamret \n", + "2000 Resting State rest \n", + "2001 Spatial Working Memory Capacity Tasks (SCAP) scap \n", + "2002 Stop-Signal Task stopsignal \n", + "2003 Task Switching taskswitch \n", + "\n", + " TaskParameters TotalScanTimeSec \\\n", + "0 {'ISI': 3, 'ITI': 2, 'mean_iti': 4, 'min_iti':... 542.0 \n", + "1 NaN 312.0 \n", + "2 {'trigger_time': None} 590.0 \n", + "3 {'Settings': {'BSI': 1, 'ISI': 1.5, 'Ladder1 s... 376.0 \n", + "4 {'button_set': 2, 'left_color': 'red', 'right_... 424.0 \n", + "... ... ... \n", + "1999 {'trigger_time': 8.2909} 544.0 \n", + "2000 NaN 312.0 \n", + "2001 {'trigger_time': 8.2668} 590.0 \n", + "2002 {'Settings': {'BSI': 1, 'ISI': 1.5, 'Ladder1 s... 376.0 \n", + "2003 {'button_set': 4, 'left_color': 'green', 'righ... 424.0 \n", + "\n", + " TransmitCoilName VariableFlipAngleFlag \n", + "0 Body N \n", + "1 Body N \n", + "2 Body N \n", + "3 Body N \n", + "4 Body N \n", + "... ... ... \n", + "1999 Body N \n", + "2000 Body N \n", + "2001 Body N \n", + "2002 Body N \n", + "2003 Body N \n", + "\n", + "[2004 rows x 41 columns]" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "import pandas as pd\n", "\n", "metadata_list = []\n", - "all_fmri_files = layout.get(datatype='func', suffix='bold', return_type='file', extensions='.nii.gz')\n", + "all_fmri_files = layout.get(datatype=\"func\", suffix=\"bold\", return_type=\"file\", extension=[\".nii.gz\"])\n", "for fmri_file in all_fmri_files:\n", " fmri_metadata = layout.get_metadata(fmri_file)\n", " metadata_list.append(fmri_metadata)\n", @@ -325,7 +3496,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -341,7 +3512,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -357,9 +3528,169 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
participant_iddiagnosisagegenderbartbhtdwipamencpamretrestscapstopsignalT1wtaskswitchScannerSerialNumberghost_NoGhost
0sub-10159CONTROL30F1.0NaN1.0NaNNaN1.01.01.01.01.035343.0No_ghost
1sub-10171CONTROL24M1.01.01.0NaNNaN1.01.01.01.01.035343.0No_ghost
2sub-10189CONTROL49M1.0NaN1.0NaNNaN1.01.01.01.01.035343.0No_ghost
3sub-10193CONTROL40M1.0NaN1.0NaNNaNNaNNaNNaN1.0NaN35343.0No_ghost
4sub-10206CONTROL21M1.0NaN1.0NaNNaN1.01.01.01.01.035343.0No_ghost
\n", + "
" + ], + "text/plain": [ + " participant_id diagnosis age gender bart bht dwi pamenc pamret rest \\\n", + "0 sub-10159 CONTROL 30 F 1.0 NaN 1.0 NaN NaN 1.0 \n", + "1 sub-10171 CONTROL 24 M 1.0 1.0 1.0 NaN NaN 1.0 \n", + "2 sub-10189 CONTROL 49 M 1.0 NaN 1.0 NaN NaN 1.0 \n", + "3 sub-10193 CONTROL 40 M 1.0 NaN 1.0 NaN NaN NaN \n", + "4 sub-10206 CONTROL 21 M 1.0 NaN 1.0 NaN NaN 1.0 \n", + "\n", + " scap stopsignal T1w taskswitch ScannerSerialNumber ghost_NoGhost \n", + "0 1.0 1.0 1.0 1.0 35343.0 No_ghost \n", + "1 1.0 1.0 1.0 1.0 35343.0 No_ghost \n", + "2 1.0 1.0 1.0 1.0 35343.0 No_ghost \n", + "3 NaN NaN 1.0 NaN 35343.0 No_ghost \n", + "4 1.0 1.0 1.0 1.0 35343.0 No_ghost " + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "participant_metadata.head()" ] @@ -374,9 +3705,127 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 16, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
participant_iddiagnosisagegenderbartbhtdwipamencpamretrestscapstopsignalT1wtaskswitchScannerSerialNumberghost_NoGhost
6sub-10225CONTROL35M1.01.01.0NaNNaN1.01.01.01.01.035343.0No_ghost
10sub-10249CONTROL28M1.01.01.0NaNNaN1.01.01.01.01.035343.0No_ghost
12sub-10271CONTROL41F1.01.01.0NaNNaN1.01.01.01.01.035343.0No_ghost
\n", + "
" + ], + "text/plain": [ + " participant_id diagnosis age gender bart bht dwi pamenc pamret rest \\\n", + "6 sub-10225 CONTROL 35 M 1.0 1.0 1.0 NaN NaN 1.0 \n", + "10 sub-10249 CONTROL 28 M 1.0 1.0 1.0 NaN NaN 1.0 \n", + "12 sub-10271 CONTROL 41 F 1.0 1.0 1.0 NaN NaN 1.0 \n", + "\n", + " scap stopsignal T1w taskswitch ScannerSerialNumber ghost_NoGhost \n", + "6 1.0 1.0 1.0 1.0 35343.0 No_ghost \n", + "10 1.0 1.0 1.0 1.0 35343.0 No_ghost \n", + "12 1.0 1.0 1.0 1.0 35343.0 No_ghost " + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "participant_metadata.loc[[6, 10, 12]]" ] @@ -390,9 +3839,169 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 17, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
participant_iddiagnosisagegenderbartbhtdwipamencpamretrestscapstopsignalT1wtaskswitchScannerSerialNumberghost_NoGhost
0sub-10159CONTROL30F1.0NaN1.0NaNNaN1.01.01.01.01.035343.0No_ghost
1sub-10171CONTROL24M1.01.01.0NaNNaN1.01.01.01.01.035343.0No_ghost
2sub-10189CONTROL49M1.0NaN1.0NaNNaN1.01.01.01.01.035343.0No_ghost
3sub-10193CONTROL40M1.0NaN1.0NaNNaNNaNNaNNaN1.0NaN35343.0No_ghost
4sub-10206CONTROL21M1.0NaN1.0NaNNaN1.01.01.01.01.035343.0No_ghost
\n", + "
" + ], + "text/plain": [ + " participant_id diagnosis age gender bart bht dwi pamenc pamret rest \\\n", + "0 sub-10159 CONTROL 30 F 1.0 NaN 1.0 NaN NaN 1.0 \n", + "1 sub-10171 CONTROL 24 M 1.0 1.0 1.0 NaN NaN 1.0 \n", + "2 sub-10189 CONTROL 49 M 1.0 NaN 1.0 NaN NaN 1.0 \n", + "3 sub-10193 CONTROL 40 M 1.0 NaN 1.0 NaN NaN NaN \n", + "4 sub-10206 CONTROL 21 M 1.0 NaN 1.0 NaN NaN 1.0 \n", + "\n", + " scap stopsignal T1w taskswitch ScannerSerialNumber ghost_NoGhost \n", + "0 1.0 1.0 1.0 1.0 35343.0 No_ghost \n", + "1 1.0 1.0 1.0 1.0 35343.0 No_ghost \n", + "2 1.0 1.0 1.0 1.0 35343.0 No_ghost \n", + "3 NaN NaN 1.0 NaN 35343.0 No_ghost \n", + "4 1.0 1.0 1.0 1.0 35343.0 No_ghost " + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "participant_metadata.loc[:4]" ] @@ -406,9 +4015,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "(272, 16)" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "participant_metadata.shape" ] @@ -431,9 +4051,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 19, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "272" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "participant_metadata['participant_id'].count()" ] @@ -448,9 +4079,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 20, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "array(['CONTROL', 'SCHZ', 'BIPOLAR', 'ADHD'], dtype=object)" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "participant_metadata['diagnosis'].unique()" ] @@ -464,9 +4106,24 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 21, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "CONTROL 130\n", + "SCHZ 50\n", + "BIPOLAR 49\n", + "ADHD 43\n", + "Name: diagnosis, dtype: int64" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "participant_metadata['diagnosis'].value_counts()" ] @@ -480,18 +4137,51 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 22, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "M 155\n", + "F 117\n", + "Name: gender, dtype: int64" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "participant_metadata['gender'].value_counts()" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 23, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "diagnosis gender\n", + "ADHD F 22\n", + " M 21\n", + "BIPOLAR F 21\n", + " M 28\n", + "CONTROL F 62\n", + " M 68\n", + "SCHZ F 12\n", + " M 38\n", + "dtype: int64" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "participant_metadata.groupby(['diagnosis', 'gender']).size()" ] @@ -505,9 +4195,60 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 24, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "## UCLA Consortium for Neuropsychiatric Phenomics LA5c Study\r\n", + "\r\n", + "Preprocessed data described in\r\n", + "\r\n", + "\r\n", + "Gorgolewski KJ, Durnez J and Poldrack RA. Preprocessed Consortium for Neuropsychiatric Phenomics dataset. F1000Research 2017, 6:1262\r\n", + "https://doi.org/10.12688/f1000research.11964.2\r\n", + "\r\n", + "\r\n", + "are available at https://legacy.openfmri.org/dataset/ds000030/ and via Amazon Web Services S3 protocol at: s3://openneuro/ds000030/ds000030_R1.0.5/uncompressed/derivatives/\r\n", + "\r\n", + "## Subjects / Participants\r\n", + "The participants.tsv file contains subject IDs with demographic informations as well as an inventory of the scans that are included for each subject.\r\n", + "\r\n", + "## Dataset Derivatives (/derivatives)\r\n", + "The /derivaties folder contains summary information that reflects the data and its contents:\r\n", + "\r\n", + "1. Final_Scan_Count.pdf - Plot showing the over all scan inclusion, for quick reference.\r\n", + "2. parameter_plots/ - Folder contains many scan parameters plotted over time. Plot symbols are color coded by imaging site. Intended to provide a general sense of protocol adherence throughout the study. Individual parameters scan be found in the scan .json sidecar file. A single file containing the combined data from all of the imaging .json sidecars if provided in parameter_plots/MR_Scan_Parameters.tsv file.\r\n", + "3. physio_plots/ - Folder contains a plot of the physiological recording trace for the Breath Hold and Resting State functional scans. For the BHT, the instructional cue timings are represented by shaded background.\r\n", + "4. event_plots/ - Simple plots of the function task events files. The x-axis is always time (onset), and the y-axis can be task-specific. Also intended as a quick reference or summary.\r\n", + "5. mriqcp/ - Output of the current version (as of 27 Jan 2016) of MRIQCP (MRI Quality Control Protocol: https://github.com/poldracklab/mriqc). Included are numeric results of anatomical and functional protocols as well as single subject results plotted against group distribution.\r\n", + "6. data_browser/ - a rudimentary data visualization for MRIQP (see: http://wtriplett.github.io/ds030/)\r\n", + "\r\n", + "## Scan-specific Notes\r\n", + "\r\n", + "All scan files were converted from scanner DICOM files using dcm2niix (0c9e5c8 from https://github.com/neurolabusc/dcm2niix.git). Extra DICOM metadata elements were extracted using GDCM (http://gdcm.sourceforge.net/wiki/index.php/Main_Page) and combined to form each scan's .json sidecar.\r\n", + "\r\n", + "**Note regarding scan and task timing**: In most cases, the trigger time was provided in the task data file and has been transferred into the TaskParameter section of each scans *_bold.json file. If the trigger time is available, a correction was performed to the onset times to account for trigger delay. The uncompensated onset times are included in the onset_NoTriggerAdjust column. There will be an 8 second discrepancy between the compensated and uncompensated that accounts for pre-scans (4 TRs) performed by the scanner. In the cases where the trigger time is not available, the output of (TotalScanTime - nVols*RepetitionTime) may provide an estimate of pre-scan time.\r\n", + "\r\n", + "### T1w Anatomical\r\n", + "Defacing was performed using freesurfer mri_deface (https://surfer.nmr.mgh.harvard.edu/fswiki/mri_deface)\r\n", + "\r\n", + " Bischoff-Grethe, Amanda et al. \"A Technique for the Deidentification of Structural Brain MR Images.\" Human brain mapping 28.9 (2007): 892–903. PMC. Web. 27 Jan. 2016.\r\n", + "\r\n", + "### PAMenc / PAMret\r\n", + "The larger amount of missing PAM scans is due to a task design change early in the study. It was decided that data collected before the design change would be excluded.\r\n", + "\r\n", + "### Stop Signal\r\n", + "The Stop Signal task consisted of both a training task (no MRI) and the in-scanner fMRI task. The data from the training run is included in each subject's beh folder with the task name \"stopsignaltraining\".\r\n", + "\r\n", + "\r\n", + "## Known Issues:\r\n", + "Some of the T1-weighted images included within this dataset (around 20%) show an aliasing artifact potentially generated by a headset. The artifact renders as a ghost that may overlap the cortex through one or both temporal lobes. A list of participants showing the artifact has been added to the dataset.\r\n" + ] + } + ], "source": [ "!cat ../../data/ds000030/README" ] @@ -528,9 +4269,311 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 25, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
participant_iddiagnosisagegenderbartbhtdwipamencpamretrestscapstopsignalT1wtaskswitchScannerSerialNumberghost_NoGhost
0sub-10159CONTROL30F1.0NaN1.0NaNNaN1.01.01.01.01.035343.0No_ghost
1sub-10171CONTROL24M1.01.01.0NaNNaN1.01.01.01.01.035343.0No_ghost
2sub-10189CONTROL49M1.0NaN1.0NaNNaN1.01.01.01.01.035343.0No_ghost
4sub-10206CONTROL21M1.0NaN1.0NaNNaN1.01.01.01.01.035343.0No_ghost
5sub-10217CONTROL33F1.0NaN1.0NaNNaN1.01.01.01.01.035343.0No_ghost
...................................................
175sub-50077SCHZ29M1.01.01.01.01.01.01.01.01.01.035426.0No_ghost
176sub-50080SCHZ29M1.01.01.01.01.01.01.01.01.01.035426.0No_ghost
177sub-50081SCHZ32M1.01.01.01.01.01.01.01.01.01.035426.0No_ghost
178sub-50083SCHZ40M1.01.01.01.01.01.01.01.01.01.035426.0No_ghost
179sub-50085SCHZ25M1.01.01.01.01.01.01.01.01.01.035343.0ghost
\n", + "

172 rows × 16 columns

\n", + "
" + ], + "text/plain": [ + " participant_id diagnosis age gender bart bht dwi pamenc pamret \\\n", + "0 sub-10159 CONTROL 30 F 1.0 NaN 1.0 NaN NaN \n", + "1 sub-10171 CONTROL 24 M 1.0 1.0 1.0 NaN NaN \n", + "2 sub-10189 CONTROL 49 M 1.0 NaN 1.0 NaN NaN \n", + "4 sub-10206 CONTROL 21 M 1.0 NaN 1.0 NaN NaN \n", + "5 sub-10217 CONTROL 33 F 1.0 NaN 1.0 NaN NaN \n", + ".. ... ... ... ... ... ... ... ... ... \n", + "175 sub-50077 SCHZ 29 M 1.0 1.0 1.0 1.0 1.0 \n", + "176 sub-50080 SCHZ 29 M 1.0 1.0 1.0 1.0 1.0 \n", + "177 sub-50081 SCHZ 32 M 1.0 1.0 1.0 1.0 1.0 \n", + "178 sub-50083 SCHZ 40 M 1.0 1.0 1.0 1.0 1.0 \n", + "179 sub-50085 SCHZ 25 M 1.0 1.0 1.0 1.0 1.0 \n", + "\n", + " rest scap stopsignal T1w taskswitch ScannerSerialNumber \\\n", + "0 1.0 1.0 1.0 1.0 1.0 35343.0 \n", + "1 1.0 1.0 1.0 1.0 1.0 35343.0 \n", + "2 1.0 1.0 1.0 1.0 1.0 35343.0 \n", + "4 1.0 1.0 1.0 1.0 1.0 35343.0 \n", + "5 1.0 1.0 1.0 1.0 1.0 35343.0 \n", + ".. ... ... ... ... ... ... \n", + "175 1.0 1.0 1.0 1.0 1.0 35426.0 \n", + "176 1.0 1.0 1.0 1.0 1.0 35426.0 \n", + "177 1.0 1.0 1.0 1.0 1.0 35426.0 \n", + "178 1.0 1.0 1.0 1.0 1.0 35426.0 \n", + "179 1.0 1.0 1.0 1.0 1.0 35343.0 \n", + "\n", + " ghost_NoGhost \n", + "0 No_ghost \n", + "1 No_ghost \n", + "2 No_ghost \n", + "4 No_ghost \n", + "5 No_ghost \n", + ".. ... \n", + "175 No_ghost \n", + "176 No_ghost \n", + "177 No_ghost \n", + "178 No_ghost \n", + "179 ghost \n", + "\n", + "[172 rows x 16 columns]" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "participant_metadata = participant_metadata[(participant_metadata.diagnosis.isin(['CONTROL', 'SCHZ'])) & \n", " (participant_metadata.T1w == 1) & \n", @@ -541,9 +4584,9 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3.7.7 64-bit ('mri_venv': venv)", "language": "python", - "name": "python3" + "name": "python37764bitmrivenvvenv5096b94eaaed40979bf315e6206a6cc9" }, "language_info": { "codemirror_mode": { @@ -555,7 +4598,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.4" + "version": "3.7.7" } }, "nbformat": 4, diff --git a/code/02-anatomy-of-nifti/someones_anatomy.nii.gz b/data/someones_anatomy.nii.gz similarity index 100% rename from code/02-anatomy-of-nifti/someones_anatomy.nii.gz rename to data/someones_anatomy.nii.gz diff --git a/code/01-neuroimaging-fundamentals/T1w.gif b/fig/T1w.gif similarity index 100% rename from code/01-neuroimaging-fundamentals/T1w.gif rename to fig/T1w.gif diff --git a/code/01-neuroimaging-fundamentals/T2w.gif b/fig/T2w.gif similarity index 100% rename from code/01-neuroimaging-fundamentals/T2w.gif rename to fig/T2w.gif diff --git a/code/03-brain-imaging-data-structure/bids_structure.jpg b/fig/bids_structure.jpg similarity index 100% rename from code/03-brain-imaging-data-structure/bids_structure.jpg rename to fig/bids_structure.jpg diff --git a/code/01-neuroimaging-fundamentals/bold.gif b/fig/bold.gif similarity index 100% rename from code/01-neuroimaging-fundamentals/bold.gif rename to fig/bold.gif diff --git a/code/02-anatomy-of-nifti/coordinate_systems.png b/fig/coordinate_systems.png similarity index 100% rename from code/02-anatomy-of-nifti/coordinate_systems.png rename to fig/coordinate_systems.png diff --git a/code/01-neuroimaging-fundamentals/dicom_to_nifti.png b/fig/dicom_to_nifti.png similarity index 100% rename from code/01-neuroimaging-fundamentals/dicom_to_nifti.png rename to fig/dicom_to_nifti.png diff --git a/code/01-neuroimaging-fundamentals/dwi.gif b/fig/dwi.gif similarity index 100% rename from code/01-neuroimaging-fundamentals/dwi.gif rename to fig/dwi.gif diff --git a/code/01-neuroimaging-fundamentals/mr_scan_types.png b/fig/mr_scan_types.png similarity index 100% rename from code/01-neuroimaging-fundamentals/mr_scan_types.png rename to fig/mr_scan_types.png diff --git a/code/02-anatomy-of-nifti/mri_slices.jpg b/fig/mri_slices.jpg similarity index 100% rename from code/02-anatomy-of-nifti/mri_slices.jpg rename to fig/mri_slices.jpg diff --git a/code/02-anatomy-of-nifti/numpy_arrays.png b/fig/numpy_arrays.png similarity index 100% rename from code/02-anatomy-of-nifti/numpy_arrays.png rename to fig/numpy_arrays.png diff --git a/requirements.txt b/requirements.txt index 062bb76..d539940 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,7 +1,7 @@ -nibabel -pybids -datalad -awscli -bids-validator +awscli==1.18.97 +datalad==0.13.0 +matplotlib +nibabel==3.1.1 numpy pandas +pybids==0.11.1 \ No newline at end of file