forked from bioinformatics-core-shared-training/basicr
-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathgenerate-data-and-images.R
153 lines (110 loc) · 4.5 KB
/
generate-data-and-images.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
### R code to generate some of the data and static images used in the materials
## Get the cleaned patient data from the r-intermediate course
download.file("https://raw.githubusercontent.com/bioinformatics-core-shared-training/r-intermediate/master/patient-data-cleaned.txt",destfile = "patient-data-cleaned.txt")
tmp <- read.delim("patient-data-cleaned.txt")
head(tmp)
set.seed("25052017")
library(dplyr)
rand.ind1 <- sample(1:nrow(tmp),10)
rand.ind2 <- sample(1:nrow(tmp),5)
tmp$Height[rand.ind1] <- NA
tmp$Weight[rand.ind2] <- NA
tmp %>%
mutate(Age=floor(runif(nrow(tmp), 23,90))) %>%
select(-c(Name, BMI,Overweight,Died,Count,Birth,Date.Entered.Study)) %>%
write.table("patient-info.txt",quote=FALSE,sep="\t",row.names = FALSE)
## Exercise 4a
png("images/exercise4a.png",width=600,height=300)
par(mfrow=c(1,3))
weather <- read.csv("ozone.csv")
plot(weather$Solar.R, weather$Ozone)
hist(weather$Wind)
boxplot(weather$Ozone ~ weather$Month)
dev.off()
### Image with all the plotting characters
png("images/pch.png")
par(mar=c(0.1,0.1,0.1,0.1))
i <- 0:24
x <- floor(i /5) + 1
y <- i %%5
plot(1:10, type="n", xlim = c(1,5), ylim=c(-1,5),axes=F,xlab="",ylab="")
points(x,y,pch=i+1, cex=2)
text(x,y-0.3,i+1)
dev.off()
## Exercise 4b
png("images/exercise4b.png",width=500,height=500)
par(mfrow=c(2,2))
plot(weather$Solar.R,weather$Ozone, col="orange", pch=16,
ylab="Ozone level", xlab="Solar Radiation",
main="Relationship between ozone level and solar radiation")
hist(weather$Wind, col="purple", xlab="Wind Speed", main="Distribution of Wind Speed", breaks=20, freq=FALSE)
boxplot(weather$Ozone~weather$Month,col=rainbow(5),names=c("May", "Jun", "Jul", "Aug","Sep"),las=2,lab="Ozone Level",main="Distribution of Ozone per-month")
dev.off()
## Exercise 5a
png("images/exercise5a.png",width=900,height=300)
par(mfrow=c(1,3))
plot(weather$Solar.R,weather$Ozone,pch=16,col="lightgreen",ylab="Ozone level",xlab="Solar Radiation")
plot(weather$Wind,weather$Ozone, pch=15,col="steelblue",ylab="Ozone level", xlab="Wind Speed")
plot(weather$Temp,weather$Ozone,pch=17,col="orange", ylab="Ozone level",xlab="Temperature")
dev.off()
## Exercise 5b
png("images/exercise5b.png")
plot(weather$Temp,weather$Ozone, pch=17,
col="orange", ylab="Ozone level",
xlab="Temperature")
highO <- which(weather$Ozone > 100)
abline(h=100,lty=2)
points(weather$Temp[highO],weather$Ozone[highO],pch=17,col="red")
dev.off()
## Plot of weights of makes versus females
png("images/males-versus-females.png")
boxplot(patients$Weight~patients$Sex)
dev.off()
png("images/exercise6.png")
plot(weather$Temp, weather$Ozone, pch=16)
mod1 <- lm(weather$Ozone~weather$Temp)
abline(mod1, col="red", lty=2)
c = coef(mod1)
text(60,150, paste("y = ", round(c[2],2), "x",round(c[1],2),sep=""))
dev.off()
png("images/exercise6b.png")
plot(weather$Temp, weather$Ozone, pch=16)
abline(mod1, col="red", lty=2)
cor = cor(weather$Temp,weather$Ozone,use="c")
cor
text(95,150, paste("r^2 = ", round(cor^2,2)))
dev.off()
## Gene Expression dataset
if(!file.exists("gene.expression.txt")){
if(!require(breastCancerNKI) | require(genefilter)) {
source("http://www.bioconductor.org/biocLite.R")
biocLite(c("breastCancerNKI","genefilter"))
}
data("nki")
cancer.patients <- pData(nki)[,c("samplename","age","er","grade")]
genes <- fData(nki)[,c("probe","HUGO.gene.symbol","Cytoband")]
exprs(nki) <- exprs(nki)[!is.na(genes$HUGO.gene.symbol),]
genes <- genes[!is.na(genes$HUGO.gene.symbol),]
##get the top50 DE genes, plus 500 random
ps <- NULL
for(i in 1:nrow(genes)){
ps[i] <- t.test(exprs(nki)[i,] ~ factor(cancer.patients$er))$p.value
}
set.seed(070815)
ind <- order(ps, decreasing = FALSE)[1:50]
ind <- sort(c(ind, sample(setdiff(1:nrow(genes),ind),500)))
evalues <- exprs(nki)[ind,]
genes <- genes[ind,]
library(org.Hs.eg.db)
chr <- select(org.Hs.eg.db, columns=c("CHR","CHRLOC"),keys = as.character(genes$HUGO.gene.symbol),keytype = "SYMBOL")
genes$Chromosome <- chr[match(genes$HUGO.gene.symbol, chr[,1]),2]
genes$Chromosome <- ifelse(!is.na(genes$Chromosome),paste0("chr", genes$Chromosome),NA)
genes$Start <- abs(chr[match(genes$HUGO.gene.symbol, chr[,1]),3])
genes <- genes[,-3]
final <- !is.na(genes$Chromosome)
genes <- genes[final,]
evalues <- evalues[final,]
write.table(evalues, file="gene.expression.txt",quote=FALSE,sep="\t")
write.table(genes, file="gene.description.txt",quote=FALSE,sep="\t")
write.table(cancer.patients, file="cancer.patients.txt",quote=FALSE,sep="\t")
}