forked from cap76/intro-machine-learning-2019B
-
Notifications
You must be signed in to change notification settings - Fork 19
/
22-solutions-logistic-regression-gaussian-processes.Rmd
264 lines (209 loc) · 7.96 KB
/
22-solutions-logistic-regression-gaussian-processes.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
# Solutions ch. 4 - Linear and non-linear (logistic) regression {#solutions-logistic-regression}
Solutions to exercises of chapter \@ref(logistic-regression).
Exercise 9.1.
```{r echo=T}
options(warn=-1)
geneindex <- 36
D <- read.csv(file = "data/Arabidopsis/Arabidopsis_Botrytis_transpose_2.csv", header = TRUE, sep = ",", row.names=1)
genenames <- colnames(D)
Xs <- D$Time[1:24]
plot(Xs,(D[1:24,geneindex]),type="p",col="black",ylim=c(min(D[,geneindex])-0.2, max(D[,geneindex]+0.2)),main=genenames[geneindex],xlab = "Time", ylab = "log_2 expression")
points(Xs,(D[25:nrow(D),geneindex]),type="p",col="red")
```
Exercise 9.2. The caret package has a variety of features that are of use in ML. In the previous example, above, we fitted a linear model to a gene to identify parameters and make predictions using all the data. A better approach would be to partition the data into a test We can make use of the caret functionality to split our data into training and test sets, which should allow us to gauge uncertainty in our parameters and the strength of the model.
Exercise 9.3. Linear regression can generally be applied for any number of variables. A notable example, would be to regress the expression pattern of a gene against putative regulators.
```{r echo=T}
library(caret)
geneindex <- 10
lrfit3 <- train(y~., data=data.frame(x=D[1:24,3:10],y=D[1:24,geneindex]), method = "lm")
```
Excercise 9.4. Compare the RMSE for various polynomial models versus that of the linear models.
```{r echo=T}
lrfit2 <- train(y~poly(x,degree=1), data=data.frame(x=D[25:nrow(D),1],y=D[25:nrow(D),geneindex]), method = "lm")
lrfit3 <- train(y~poly(x,degree=3), data=data.frame(x=D[25:nrow(D),1],y=D[25:nrow(D),geneindex]), method = "lm")
lrfit4 <- train(y~poly(x,degree=20), data=data.frame(x=D[25:nrow(D),1],y=D[25:nrow(D),geneindex]), method = "lm")
plot(Xs,D[25:nrow(D),geneindex],type="p",col="black",ylim=c(min(D[,geneindex])-0.2, max(D[,geneindex]+0.2)),main=genenames[geneindex])
lines(Xs,fitted(lrfit2),type="l",col="blue")
lines(Xs,fitted(lrfit3),type="l",col="red")
lines(Xs,fitted(lrfit4),type="l",col="black")
```
We can look at the RMSE:
```{r echo=T}
barplot(c(lrfit2$results$RMSE,lrfit3$results$RMSE,lrfit4$results$RMSE))
```
Excercise 9.4 (optional):
Example covariance functions implemented from the [Kernel Cookbook](http://www.cs.toronto.edu/~duvenaud/cookbook/). Here we implement a rational quadratic covariance function:
```{r echo=T}
covRQ <- function(X1,X2,l=1,sig=1,a=2) {
K <- matrix(rep(0, length(X1)*length(X2)), nrow=length(X1))
for (i in 1:nrow(K)) {
for (j in 1:ncol(K)) {
K[i,j] <- sig^2*(1 + (abs(X1[i]-X2[j])^2/(2*a*l^2)) )^a
}
}
return(K)
}
```
Here we implement a periodic covariance function:
```{r echo=T}
covPer <- function(X1,X2,l=1,sig=1,p=1) {
K <- matrix(rep(0, length(X1)*length(X2)), nrow=length(X1))
for (i in 1:nrow(K)) {
for (j in 1:ncol(K)) {
K[i,j] <- sig^2*exp(sin(pi*abs(X1[i]-X2[j])/p)^2 / l^2)
}
}
return(K)
}
```
Exercise 9.5: Try fitting plotting the GP for the optimised values of the hyperparameters.
We need to borrow the following snippets of code from the main text.
```{r echo=T}
require(MASS)
require(plyr)
require(reshape2)
require(ggplot2)
covSE <- function(X1,X2,l=1,sig=1) {
K <- matrix(rep(0, length(X1)*length(X2)), nrow=length(X1))
for (i in 1:nrow(K)) {
for (j in 1:ncol(K)) {
K[i,j] <- sig^2*exp(-0.5*(abs(X1[i]-X2[j]))^2 /l^2)
}
}
return(K)
}
```
```{r echo=T}
x.star <- seq(-5,5,len=500)
f <- data.frame(x=c(-4,-3,-2,-1,0,1,2),
y=sin(c(-4,-3,-2,-1,0,1,2)))
x <- f$x
k.xx <- covSE(x,x)
k.xxs <- covSE(x,x.star)
k.xsx <- covSE(x.star,x)
k.xsxs <- covSE(x.star,x.star)
f.star.bar <- k.xsx%*%solve(k.xx)%*%f$y #Mean
cov.f.star <- k.xsxs - k.xsx%*%solve(k.xx)%*%k.xxs #Var
y1 <- mvrnorm(1, f.star.bar, cov.f.star)
y2 <- mvrnorm(1, f.star.bar, cov.f.star)
y3 <- mvrnorm(1, f.star.bar, cov.f.star)
plot(x.star,sin(x.star),type = 'l',col="red",ylim=c(-2.2, 2.2))
points(f,type = 'p',col="blue")
lines(x.star,y1,type = 'l',col="blue")
lines(x.star,y2,type = 'l',col="blue")
lines(x.star,y3,type = 'l',col="blue")
```
Exercise 9.6: Try fitting plotting the GP for the optimised values of the hyperparameters.
```{r echo=T}
calcML <- function(f,l=1,sig=1) {
f2 <- t(f)
yt <- f2[2,]
y <- f[,2]
K <- covSE(f[,1],f[,1],l,sig)
ML <- -0.5*yt%*%ginv(K+0.1^2*diag(length(y)))%*%y -0.5*log(det(K)) -(length(f[,1])/2)*log(2*pi);
return(ML)
}
```
```{r echo=T}
#install.packages("plot3D")
library(plot3D)
par <- seq(.1,10,by=0.1)
ML <- matrix(rep(0, length(par)^2), nrow=length(par), ncol=length(par))
for(i in 1:length(par)) {
for(j in 1:length(par)) {
ML[i,j] <- calcML(f,par[i],par[j])
}
}
ind<-which(ML==max(ML), arr.ind=TRUE)
lmap<-par[ind[1]]
varmap<-par[ind[2]]
```
```{r echo=T}
x.star <- seq(-5,5,len=500)
f <- data.frame(x=c(-4,-3,-2,-1,0,1,2),
y=sin(c(-4,-3,-2,-1,0,1,2)))
x <- f$x
k.xx <- covSE(x,x,lmap,varmap)
k.xxs <- covSE(x,x.star,lmap,varmap)
k.xsx <- covSE(x.star,x,lmap,varmap)
k.xsxs <- covSE(x.star,x.star,lmap,varmap)
f.star.bar <- k.xsx%*%solve(k.xx)%*%f$y #Mean
cov.f.star <- k.xsxs - k.xsx%*%solve(k.xx)%*%k.xxs #Var
plot(x.star,sin(x.star),type = 'l',col="red",ylim=c(-2.2, 2.2))
points(f,type='o')
lines(x.star,f.star.bar,type = 'l')
lines(x.star,f.star.bar+2*sqrt(diag(cov.f.star)),type = 'l',pch=22, lty=2, col="black")
lines(x.star,f.star.bar-2*sqrt(diag(cov.f.star)),type = 'l',pch=22, lty=2, col="black")
```
Excercise 9.7: Now try fitting a Gaussian process to one of the gene expression profiles in the Botrytis dataset.
```{r echo=T}
covSEn <- function(X1,X2,l=1,sig=1,sigman=0.1) {
K <- matrix(rep(0, length(X1)*length(X2)), nrow=length(X1))
for (i in 1:nrow(K)) {
for (j in 1:ncol(K)) {
K[i,j] <- sig^2*exp(-0.5*(abs(X1[i]-X2[j]))^2 /l^2)
if (i==j){
K[i,j] <- K[i,j] + sigman^2
}
}
}
return(K)
}
```
```{r echo=T}
geneindex <- 36
lmap <- 0.1
varmap <- 5
x.star <- seq(0,1,len=500)
f <- data.frame(x=D[25:nrow(D),1]/48, y=D[25:nrow(D),geneindex])
x <- f$x
k.xx <- covSEn(x,x,lmap,varmap,0.2)
k.xxs <- covSEn(x,x.star,lmap,varmap,0.2)
k.xsx <- covSEn(x.star,x,lmap,varmap,0.2)
k.xsxs <- covSEn(x.star,x.star,lmap,varmap,0.2)
f.star.bar <- k.xsx%*%solve(k.xx)%*%f$y #Mean
cov.f.star <- k.xsxs - k.xsx%*%solve(k.xx)%*%k.xxs #Var
plot(f,type = 'l',col="red")
points(f,type='o')
lines(x.star,f.star.bar,type = 'l')
lines(x.star,f.star.bar+2*sqrt(diag(cov.f.star)),type = 'l',pch=22, lty=2, col="black")
lines(x.star,f.star.bar-2*sqrt(diag(cov.f.star)),type = 'l',pch=22, lty=2, col="black")
```
```{r echo=T}
calcMLn <- function(f,l=1,sig=1,sigman=0.1) {
f2 <- t(f)
yt <- f2[2,]
y <- f[,2]
K <- covSE(f[,1],f[,1],l,sig)
ML <- -0.5*yt%*%ginv(K+diag(length(y))*sigman^2)%*%y -0.5*log(det(K+diag(length(y))*sigman^2)) -(length(f[,1])/2)*log(2*pi);
return(ML)
}
```
Exercise 9.8 (optional): Write a function for determining differential expression for two genes. Hint: we are interested in comparing two models, and using Bayes' Factor to determine if the genes are differentially expressed.
```{r echo=T}
f <- data.frame(x=D[25:nrow(D),1]/48, y=D[25:nrow(D),geneindex])
par <- seq(.1,10,by=0.1)
ML <- matrix(rep(0, length(par)^2), nrow=length(par), ncol=length(par))
for(i in 1:length(par)) {
for(j in 1:length(par)) {
ML[i,j] <- calcMLn(f,par[i],par[j],0.05)
}
}
persp3D(z = ML,theta = 120)
ind<-which(ML==max(ML), arr.ind=TRUE)
```
Now let's calculate the BF.
```{r echo=T}
lmap <- par[ind[1]]
varmap <- par[ind[2]]
f1 <- data.frame(x=D[1:24,1]/48, y=D[1:24,geneindex])
f2 <- data.frame(x=D[25:nrow(D),1]/48, y=D[25:nrow(D),geneindex])
f3 <- data.frame(x=D[,1]/48, y=D[,geneindex])
MLs <- matrix(rep(0, 3, nrow=3))
MLs[1] <- calcMLn(f1,lmap,varmap,0.05)
MLs[2] <- calcMLn(f2,lmap,varmap,0.05)
MLs[3] <- calcMLn(f3,lmap,varmap,0.05)
BF <- (MLs[1]+MLs[2]) -MLs[3]
BF
```
So from the Bayes' Factor there's some slight evidence for model 1 (differential expression) over model 2 (non-differential expression).