forked from cap76/intro-machine-learning-2019B
-
Notifications
You must be signed in to change notification settings - Fork 19
/
18-solutions-support-vector-machines.Rmd
177 lines (153 loc) · 4.82 KB
/
18-solutions-support-vector-machines.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# Solutions ch. 6 - Support vector machines {#solutions-svm}
Solutions to exercises of chapter \@ref(svm).
## Exercise 1
Load required libraries
```{r echo=T}
library(caret)
library(doMC)
library(pROC)
library(e1071)
```
Define a radial SVM using the e1071 library
```{r echo=T}
svmRadialE1071 <- list(
label = "Support Vector Machines with Radial Kernel - e1071",
library = "e1071",
type = c("Regression", "Classification"),
parameters = data.frame(parameter="cost",
class="numeric",
label="Cost"),
grid = function (x, y, len = NULL, search = "grid")
{
if (search == "grid") {
out <- expand.grid(cost = 2^((1:len) - 3))
}
else {
out <- data.frame(cost = 2^runif(len, min = -5, max = 10))
}
out
},
loop=NULL,
fit=function (x, y, wts, param, lev, last, classProbs, ...)
{
if (any(names(list(...)) == "probability") | is.numeric(y)) {
out <- e1071::svm(x = as.matrix(x), y = y, kernel = "radial",
cost = param$cost, ...)
}
else {
out <- e1071::svm(x = as.matrix(x), y = y, kernel = "radial",
cost = param$cost, probability = classProbs, ...)
}
out
},
predict = function (modelFit, newdata, submodels = NULL)
{
predict(modelFit, newdata)
},
prob = function (modelFit, newdata, submodels = NULL)
{
out <- predict(modelFit, newdata, probability = TRUE)
attr(out, "probabilities")
},
predictors = function (x, ...)
{
out <- if (!is.null(x$terms))
predictors.terms(x$terms)
else x$xNames
if (is.null(out))
out <- names(attr(x, "scaling")$x.scale$`scaled:center`)
if (is.null(out))
out <- NA
out
},
tags = c("Kernel Methods", "Support Vector Machines", "Regression", "Classifier", "Robust Methods"),
levels = function(x) x$levels,
sort = function(x)
{
x[order(x$cost), ]
}
)
```
Setup parallel processing
```{r echo=T}
registerDoMC(detectCores())
getDoParWorkers()
```
Load data
```{r echo=T}
data(segmentationData)
```
```{r echo=T}
segClass <- segmentationData$Class
```
Extract predictors from segmentationData
```{r echo=T}
segData <- segmentationData[,4:59]
```
Partition data
```{r echo=T}
set.seed(42)
trainIndex <- createDataPartition(y=segClass, times=1, p=0.5, list=F)
segDataTrain <- segData[trainIndex,]
segDataTest <- segData[-trainIndex,]
segClassTrain <- segClass[trainIndex]
segClassTest <- segClass[-trainIndex]
```
Set seeds for reproducibility (optional). We will be trying 9 values of the tuning parameter with 5 repeats of 10 fold cross-validation, so we need the following list of seeds.
```{r echo=T}
set.seed(42)
seeds <- vector(mode = "list", length = 51)
for(i in 1:50) seeds[[i]] <- sample.int(1000, 9)
seeds[[51]] <- sample.int(1000,1)
```
We will pass the twoClassSummary function into model training through **trainControl**. Additionally we would like the model to predict class probabilities so that we can calculate the ROC curve, so we use the **classProbs** option.
```{r echo=T}
cvCtrl <- trainControl(method = "repeatedcv",
repeats = 5,
number = 10,
summaryFunction = twoClassSummary,
classProbs = TRUE,
seeds=seeds)
```
Tune SVM over the cost parameter. The default grid of cost parameters start at 0.25 and double at each iteration. Choosing ```tuneLength = 9``` will give us cost parameters of 0.25, 0.5, 1, 2, 4, 8, 16, 32 and 64. The train function will calculate an appropriate value of sigma (the kernel parameter) from the data.
```{r echo=T}
svmTune <- train(x = segDataTrain,
y = segClassTrain,
method = svmRadialE1071,
tuneLength = 9,
preProc = c("center", "scale"),
metric = "ROC",
trControl = cvCtrl)
svmTune
```
```{r echo=T}
svmTune$finalModel
```
SVM accuracy profile
```{r svmAccuracyProfileCellSegment, fig.cap='SVM accuracy profile.', out.width='80%', fig.asp=0.7, fig.align='center', echo=T}
plot(svmTune, metric = "ROC", scales = list(x = list(log =2)))
```
Test set results
```{r echo=T}
#segDataTest <- predict(transformations, segDataTest)
svmPred <- predict(svmTune, segDataTest)
confusionMatrix(svmPred, segClassTest)
```
Get predicted class probabilities
```{r echo=T}
svmProbs <- predict(svmTune, segDataTest, type="prob")
head(svmProbs)
```
Build a ROC curve
```{r echo=T}
svmROC <- roc(segClassTest, svmProbs[,"PS"])
auc(svmROC)
```
Plot ROC curve.
```{r svmROCcurveCellSegment, fig.cap='SVM ROC curve for cell segmentation data set.', out.width='80%', fig.asp=1, fig.align='center', echo=T}
plot(svmROC, type = "S")
```
Calculate area under ROC curve
```{r echo=T}
auc(svmROC)
```