-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathresidual_model.py
43 lines (36 loc) · 1.3 KB
/
residual_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from keras.models import Sequential
from keras.layers import BatchNormalization, Conv2D, Activation, Concatenate
def convBlock(numIn, numOut):
model = Sequential()
model.add(BatchNormalization(input_shape=(numIn,)))
model.add(Activation('relu'))
model.add(Conv2D(numOut/2,kernel_size=(1,1),strides=(1,1),Activation='relu',input_shape=(numIn,numIn,1)))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Conv2D(numOut/2,(3,3)))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Conv2D(numOut,(1,1)))
return model
def skipLayer(numIn, numOut):
if numIn == numOut:
return Activation('linear')
else:
seq = Sequential()
seq.add(Conv2D(numOut,(1,1)))
return seq
def Residual(num_in, num_out):
model = Sequential()
model1 = convBlock(num_in,num_out)
model2 = skipLayer(num_in,num_out)
model.add(Concatenate([model1, model2]))
return model
model = Residual(10,10)
model.compile(optimizer='rmsprop',
loss='binary_crossentropy',
metrics=['accuracy'])
import numpy as np
data = np.random.random((1000, 100))
labels = np.random.randint(2, size=(1000, 1))
# Train the model, iterating on the data in batches of 32 samples
model.fit(data, labels, epochs=10, batch_size=32)