-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathCosamp.py
80 lines (61 loc) · 2.34 KB
/
Cosamp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Mar 23 13:29:52 2021
@author: danielmckenzie
% Cosamp algorithm
% Input
% K : sparsity of Sest
% Phi : measurement matrix
% u: measured vector
% tol : tolerance for approximation between successive solutions.
% Output
% Sest: Solution found by the algorithm
%
% Algorithm as described in "CoSaMP: Iterative signal recovery from
% incomplete and inaccurate samples" by Deanna Needell and Joel Tropp.
%
% This implementation was written by David Mary,
% but modified 20110707 by Bob L. Sturm to make it much clearer,
% and corrected multiple times again and again.
% To begin with, see: http://media.aau.dk/null_space_pursuits/2011/07/ ...
% algorithm-power-hour-compressive-sampling-matching-pursuit-cosamp.html
% Modified slightly for speed by Daniel McKenzie and HanQin Cai in 2020-2021
% This script/program is released under the Commons Creative Licence
% with Attribution Non-commercial Share Alike (by-nc-sa)
% http://creativecommons.org/licenses/by-nc-sa/3.0/
% Short Disclaimer: this script is for educational purpose only.
% Longer Disclaimer see http://igorcarron.googlepages.com/disclaimer
"""
import numpy as np
import numpy.linalg as la
def cosamp(Phi, u, K, tol, maxiterations):
# Initialization
Sest = np.zeros((np.shape(Phi)[1],1))
v = u;
t = 0;
halt = False
num_precision = 1e-12
T = np.array([])
while t<= maxiterations and not halt:
y = np.abs(np.dot(Phi.T,v))
# target = np.sort(y)[::-1][2*K]
# Omega = [i for (i, val) in enumerate(y)
# if val > target and val > num_precision]
Omega = np.argpartition(-abs(y), 2*K)
Omega = Omega[:2*K]
Omega = Omega[abs(y[Omega]) > num_precision]
T = np.union1d(Omega, T)
T = T.astype(int)
b ,_ ,_ ,_ = la.lstsq(Phi[:,T], u, rcond=None)
Kgoodindices = np.argpartition(-abs(b), K)
Kgoodindices = Kgoodindices[:K]
Kgoodindices = Kgoodindices[abs(b[Kgoodindices]) > num_precision]
T = T[Kgoodindices]
Sest = np.zeros(np.shape(Phi)[1])
b = b[Kgoodindices]
Sest[T] = b;
v = u - np.dot(Phi[:,T],b)
t = t+1
halt = la.norm(v)/la.norm(u) < tol
return Sest