diff --git a/tensorflow/lite/kernels/internal/reference/transpose_conv.h b/tensorflow/lite/kernels/internal/reference/transpose_conv.h index 8a51e0fa5e9..744ed0f826b 100644 --- a/tensorflow/lite/kernels/internal/reference/transpose_conv.h +++ b/tensorflow/lite/kernels/internal/reference/transpose_conv.h @@ -219,6 +219,103 @@ inline void TransposeConv( } } +inline void HybridTransposeConv( + const ConvParams& params, float* scaling_factors_ptr, + const RuntimeShape& input_shape, const int8_t* input_data, + const RuntimeShape& filter_shape, const int8_t* filter_data, + const RuntimeShape& bias_shape, const float* bias_data, + const RuntimeShape& output_shape, float* output_data, + const float* per_channel_scale, int32_t* input_offset) { + const int stride_width = params.stride_width; + const int stride_height = params.stride_height; + const int pad_width = params.padding_values.width; + const int pad_height = params.padding_values.height; + TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4); + TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4); + TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4); + + const int batches = MatchingDim(input_shape, 0, output_shape, 0); + const int input_depth = MatchingDim(input_shape, 3, filter_shape, 3); + const int output_depth = MatchingDim(filter_shape, 0, output_shape, 3); + const int input_height = input_shape.Dims(1); + const int input_width = input_shape.Dims(2); + const int filter_height = filter_shape.Dims(1); + const int filter_width = filter_shape.Dims(2); + const int output_height = output_shape.Dims(1); + const int output_width = output_shape.Dims(2); + const float output_activation_min = params.float_activation_min; + const float output_activation_max = params.float_activation_max; + if (bias_data) { + TFLITE_DCHECK_EQ(bias_shape.FlatSize(), output_depth); + } + + // Although transpose convolution simplifies to convolution with transposed + // weights for strides of 1, non-unitary striding complicates matters. To + // keep this reference implementation as clear as possible, we use a + // "scatter" access pattern, where we loop through all the input elements, + // computing their influence on the output, rather than looping through the + // output elements in the typical "gather" access pattern of a conv. We + // therefore must initialize the output array to zero. + const int num_elements = output_shape.FlatSize(); + for (int i = 0; i < num_elements; i++) { + output_data[i] = 0.0f; + } + + // Loop through input elements one at a time. + for (int batch = 0; batch < batches; ++batch) { + const float scaling_factor = scaling_factors_ptr[batch]; + for (int in_y = 0; in_y < input_height; ++in_y) { + for (int in_x = 0; in_x < input_width; ++in_x) { + for (int in_channel = 0; in_channel < input_depth; ++in_channel) { + // Loop through the output elements it will influence + const int out_x_origin = (in_x * stride_width) - pad_width; + const int out_y_origin = (in_y * stride_height) - pad_height; + for (int filter_y = 0; filter_y < filter_height; ++filter_y) { + for (int filter_x = 0; filter_x < filter_width; ++filter_x) { + for (int out_channel = 0; out_channel < output_depth; + ++out_channel) { + // Compute output element location + const int out_x = out_x_origin + filter_x; + const int out_y = out_y_origin + filter_y; + // We cannot accumulate out of bounds + if ((out_x >= 0) && (out_x < output_width) && (out_y >= 0) && + (out_y < output_height)) { + int32_t input_value = input_data[Offset( + input_shape, batch, in_y, in_x, in_channel)]; + int32_t filter_value = + filter_data[Offset(filter_shape, out_channel, filter_y, + filter_x, in_channel)]; + int32_t acc = + (input_value - input_offset[batch]) * filter_value; + output_data[Offset(output_shape, batch, out_y, out_x, + out_channel)] += + acc * per_channel_scale[out_channel] * scaling_factor; + } + } + } + } + } + } + } + } + + for (int batch = 0; batch < batches; ++batch) { + for (int out_y = 0; out_y < output_height; ++out_y) { + for (int out_x = 0; out_x < output_width; ++out_x) { + for (int out_channel = 0; out_channel < output_depth; ++out_channel) { + float acc = output_data[Offset(output_shape, batch, out_y, out_x, + out_channel)]; + if (bias_data) acc += bias_data[out_channel]; + + output_data[Offset(output_shape, batch, out_y, out_x, out_channel)] = + ActivationFunctionWithMinMax(acc, output_activation_min, + output_activation_max); + } + } + } + } +} + } // namespace reference_ops } // namespace tflite