forked from tensorflow/tflite-micro
-
Notifications
You must be signed in to change notification settings - Fork 16
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Deduplicate StridedSlice Init and Prepare (tensorflow#2203)
The Init and Prepare functions were entirely common between the reference kernel and the Xtensa optimized kernel. This PR relocates the common functions to a strided_slice_common.cc file to be used on both platforms. This reduces the reference kernel and xtena kernel files to just the Eval function. BUG=cleanup
- Loading branch information
Showing
6 changed files
with
201 additions
and
240 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,40 @@ | ||
/* Copyright 2023 The TensorFlow Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. | ||
==============================================================================*/ | ||
|
||
#ifndef TENSORFLOW_LITE_MICRO_KERNELS_STRIDED_SLICE_H_ | ||
#define TENSORFLOW_LITE_MICRO_KERNELS_STRIDED_SLICE_H_ | ||
|
||
#include <cstdint> | ||
|
||
#include "tensorflow/lite/c/builtin_op_data.h" | ||
#include "tensorflow/lite/c/common.h" | ||
#include "tensorflow/lite/micro/micro_common.h" | ||
|
||
namespace tflite { | ||
|
||
constexpr int kStridedSliceInputTensor = 0; | ||
constexpr int kStridedSliceBeginTensor = 1; | ||
constexpr int kStridedSliceEndTensor = 2; | ||
constexpr int kStridedSliceStridesTensor = 3; | ||
constexpr int kStridedSliceOutputTensor = 0; | ||
|
||
void* StridedSliceInit(TfLiteContext* context, const char* buffer, | ||
size_t length); | ||
|
||
TfLiteStatus StridedSlicePrepare(TfLiteContext* context, TfLiteNode* node); | ||
|
||
} // namespace tflite | ||
|
||
#endif // TENSORFLOW_LITE_MICRO_KERNELS_STRIDED_SLICE_H_ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,149 @@ | ||
/* Copyright 2023 The TensorFlow Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. | ||
==============================================================================*/ | ||
#include <cmath> | ||
#include <cstring> | ||
|
||
#include "tensorflow/lite/c/builtin_op_data.h" | ||
#include "tensorflow/lite/c/common.h" | ||
#include "tensorflow/lite/kernels/internal/reference/strided_slice.h" | ||
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h" | ||
#include "tensorflow/lite/kernels/kernel_util.h" | ||
#include "tensorflow/lite/kernels/op_macros.h" | ||
#include "tensorflow/lite/micro/kernels/kernel_util.h" | ||
#include "tensorflow/lite/micro/kernels/strided_slice.h" | ||
#include "tensorflow/lite/micro/micro_log.h" | ||
|
||
namespace tflite { | ||
|
||
namespace { | ||
|
||
struct StridedSliceContext { | ||
StridedSliceContext(TfLiteContext* context, TfLiteNode* node) { | ||
params = reinterpret_cast<TfLiteStridedSliceParams*>(node->builtin_data); | ||
micro_context = GetMicroContext(context); | ||
input = | ||
micro_context->AllocateTempInputTensor(node, kStridedSliceInputTensor); | ||
begin = | ||
micro_context->AllocateTempInputTensor(node, kStridedSliceBeginTensor); | ||
end = micro_context->AllocateTempInputTensor(node, kStridedSliceEndTensor); | ||
strides = micro_context->AllocateTempInputTensor( | ||
node, kStridedSliceStridesTensor); | ||
output = micro_context->AllocateTempOutputTensor(node, | ||
kStridedSliceOutputTensor); | ||
dims = NumDimensions(input); | ||
} | ||
~StridedSliceContext() { | ||
micro_context->DeallocateTempTfLiteTensor(input); | ||
micro_context->DeallocateTempTfLiteTensor(begin); | ||
micro_context->DeallocateTempTfLiteTensor(end); | ||
micro_context->DeallocateTempTfLiteTensor(strides); | ||
micro_context->DeallocateTempTfLiteTensor(output); | ||
} | ||
const TfLiteStridedSliceParams* params; | ||
MicroContext* micro_context; | ||
TfLiteTensor* input; | ||
TfLiteTensor* begin; | ||
TfLiteTensor* end; | ||
TfLiteTensor* strides; | ||
TfLiteTensor* output; | ||
int dims; | ||
}; | ||
|
||
// This Op only supports 1-4D cases and since we use the reference 4D | ||
// implementation, the 1-3D tensors are mapped to 4D. | ||
const int kMaxDim = 4; | ||
|
||
tflite::StridedSliceParams BuildStridedSliceParams( | ||
StridedSliceContext* op_context) { | ||
tflite::StridedSliceParams op_params{}; | ||
op_params.start_indices_count = op_context->dims; | ||
op_params.stop_indices_count = op_context->dims; | ||
op_params.strides_count = op_context->dims; | ||
|
||
for (int i = 0; i < op_context->dims; ++i) { | ||
op_params.start_indices[i] = GetTensorData<int32_t>(op_context->begin)[i]; | ||
op_params.stop_indices[i] = GetTensorData<int32_t>(op_context->end)[i]; | ||
op_params.strides[i] = GetTensorData<int32_t>(op_context->strides)[i]; | ||
} | ||
|
||
op_params.begin_mask = op_context->params->begin_mask; | ||
op_params.ellipsis_mask = 0; | ||
op_params.end_mask = op_context->params->end_mask; | ||
op_params.new_axis_mask = 0; | ||
op_params.shrink_axis_mask = op_context->params->shrink_axis_mask; | ||
return op_params; | ||
} | ||
|
||
// Processes the indexing tensors (begin, end and strides) to resize the | ||
// output tensor. This function is callable from both Prepare() and Eval() as | ||
// long as the caller ensures the indexing tensors are present. | ||
TfLiteStatus CheckOutputSize(TfLiteContext* context, | ||
StridedSliceContext* op_context) { | ||
using ::tflite::strided_slice::StartForAxis; | ||
using ::tflite::strided_slice::StopForAxis; | ||
TfLiteIntArray* output_shape = op_context->output->dims; | ||
int shape_size = 0; | ||
auto op_params = BuildStridedSliceParams(op_context); | ||
auto input_shape = GetTensorShape(op_context->input); | ||
for (int idx = 0; idx < op_context->dims; ++idx) { | ||
int32_t stride = GetTensorData<int32_t>(op_context->strides)[idx]; | ||
TF_LITE_ENSURE_MSG(context, stride != 0, "stride value has to be non-zero"); | ||
int32_t begin = StartForAxis(op_params, input_shape, idx); | ||
int32_t end = StopForAxis(op_params, input_shape, idx, begin); | ||
|
||
// When shrinking an axis, the end position does not matter (and can be | ||
// incorrect when negative indexing is used, see Issue #19260). Always use | ||
// begin + 1 to generate a length 1 slice, since begin has | ||
// already been adjusted for negative indices by StartForAxis. | ||
const bool shrink_axis = op_context->params->shrink_axis_mask & (1 << idx); | ||
if (shrink_axis) { | ||
end = begin + 1; | ||
} | ||
|
||
// This is valid for both positive and negative strides | ||
int32_t dim_shape = std::ceil((end - begin) / static_cast<float>(stride)); | ||
dim_shape = dim_shape < 0 ? 0 : dim_shape; | ||
if (!shrink_axis) { | ||
TF_LITE_ENSURE_EQ(context, output_shape->data[shape_size], dim_shape); | ||
shape_size++; | ||
} | ||
} | ||
TF_LITE_ENSURE_EQ(context, output_shape->size, shape_size); | ||
return kTfLiteOk; | ||
} | ||
|
||
} // namespace | ||
|
||
void* StridedSliceInit(TfLiteContext* context, const char* buffer, | ||
size_t length) { | ||
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr); | ||
return context->AllocatePersistentBuffer(context, sizeof(StridedSliceParams)); | ||
} | ||
|
||
TfLiteStatus StridedSlicePrepare(TfLiteContext* context, TfLiteNode* node) { | ||
TFLITE_DCHECK(node->user_data != nullptr); | ||
StridedSliceParams* op_params = | ||
static_cast<StridedSliceParams*>(node->user_data); | ||
TF_LITE_ENSURE_EQ(context, NumInputs(node), 4); | ||
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); | ||
StridedSliceContext op_context(context, node); | ||
TF_LITE_ENSURE_MSG(context, op_context.dims <= kMaxDim, | ||
"input dim should not exceed 4"); | ||
auto params = BuildStridedSliceParams(&op_context); | ||
memcpy(op_params, ¶ms, sizeof(StridedSliceParams)); | ||
return CheckOutputSize(context, &op_context); | ||
} | ||
|
||
} // namespace tflite |
Oops, something went wrong.