-
Notifications
You must be signed in to change notification settings - Fork 246
/
lexer.rs
1572 lines (1459 loc) · 55.1 KB
/
lexer.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//! Definition of a lexer for the WebAssembly text format.
//!
//! This module provides a [`Lexer`][] type which is an iterate over the raw
//! tokens of a WebAssembly text file. A [`Lexer`][] accounts for every single
//! byte in a WebAssembly text field, returning tokens even for comments and
//! whitespace. Typically you'll ignore comments and whitespace, however.
//!
//! If you'd like to iterate over the tokens in a file you can do so via:
//!
//! ```
//! # fn foo() -> Result<(), wast::Error> {
//! use wast::lexer::Lexer;
//!
//! let wat = "(module (func $foo))";
//! for token in Lexer::new(wat).iter(0) {
//! println!("{:?}", token?);
//! }
//! # Ok(())
//! # }
//! ```
//!
//! Note that you'll typically not use this module but will rather use
//! [`ParseBuffer`](crate::parser::ParseBuffer) instead.
//!
//! [`Lexer`]: crate::lexer::Lexer
use crate::token::Span;
use crate::Error;
use std::borrow::Cow;
use std::char;
use std::fmt;
use std::slice;
use std::str;
use std::str::Utf8Error;
/// A structure used to lex the s-expression syntax of WAT files.
///
/// This structure is used to generate [`Token`] items, which should account for
/// every single byte of the input as we iterate over it. A [`LexError`] is
/// returned for any non-lexable text.
#[derive(Clone)]
pub struct Lexer<'a> {
input: &'a str,
allow_confusing_unicode: bool,
}
/// A single token parsed from a `Lexer`.
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct Token {
/// The kind of token this represents, such as whether it's whitespace, a
/// keyword, etc.
pub kind: TokenKind,
/// The byte offset within the original source for where this token came
/// from.
pub offset: usize,
/// The byte length of this token as it resides in the original source.
//
// NB: this is `u32` to enable packing `Token` into two pointers of size.
// This does limit a single token to being at most 4G large, but that seems
// probably ok.
pub len: u32,
}
const _: () = {
assert!(std::mem::size_of::<Token>() <= std::mem::size_of::<u64>() * 2);
};
/// Classification of what was parsed from the input stream.
///
/// This enumeration contains all kinds of fragments, including comments and
/// whitespace.
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum TokenKind {
/// A line comment, preceded with `;;`
LineComment,
/// A block comment, surrounded by `(;` and `;)`. Note that these can be
/// nested.
BlockComment,
/// A fragment of source that represents whitespace.
Whitespace,
/// A left-parenthesis, including the source text for where it comes from.
LParen,
/// A right-parenthesis, including the source text for where it comes from.
RParen,
/// A string literal, which is actually a list of bytes.
String,
/// An identifier (like `$foo`).
///
/// All identifiers start with `$` and the payload here is the original
/// source text.
Id,
/// A keyword, or something that starts with an alphabetic character.
///
/// The payload here is the original source text.
Keyword,
/// An annotation (like `@foo`).
///
/// All annotations start with `@` and the payload will be the name of the
/// annotation.
Annotation,
/// A reserved series of `idchar` symbols. Unknown what this is meant to be
/// used for, you'll probably generate an error about an unexpected token.
Reserved,
/// An integer.
Integer(IntegerKind),
/// A float.
Float(FloatKind),
}
/// Description of the parsed integer from the source.
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct IntegerKind {
sign: Option<SignToken>,
has_underscores: bool,
hex: bool,
}
/// Description of a parsed float from the source.
#[allow(missing_docs)]
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum FloatKind {
#[doc(hidden)]
Inf { negative: bool },
#[doc(hidden)]
Nan { negative: bool },
#[doc(hidden)]
NanVal {
negative: bool,
has_underscores: bool,
},
#[doc(hidden)]
Normal { has_underscores: bool, hex: bool },
}
enum ReservedKind {
/// "..."
String,
/// anything that's just a sequence of `idchars!()`
Idchars,
/// $"..."
IdString,
/// @"..."
AnnotationString,
/// everything else (a conglomeration of strings, idchars, etc)
Reserved,
}
/// Errors that can be generated while lexing.
///
/// All lexing errors have line/colum/position information as well as a
/// `LexError` indicating what kind of error happened while lexing.
#[derive(Debug, Clone, PartialEq, Eq)]
#[non_exhaustive]
pub enum LexError {
/// A dangling block comment was found with an unbalanced `(;` which was
/// never terminated in the file.
DanglingBlockComment,
/// An unexpected character was encountered when generally parsing and
/// looking for something else.
Unexpected(char),
/// An invalid `char` in a string literal was found.
InvalidStringElement(char),
/// An invalid string escape letter was found (the thing after the `\` in
/// string literals)
InvalidStringEscape(char),
/// An invalid hexadecimal digit was found.
InvalidHexDigit(char),
/// An invalid base-10 digit was found.
InvalidDigit(char),
/// Parsing expected `wanted` but ended up finding `found` instead where the
/// two characters aren't the same.
Expected {
/// The character that was expected to be found
wanted: char,
/// The character that was actually found
found: char,
},
/// We needed to parse more but EOF (or end of the string) was encountered.
UnexpectedEof,
/// A number failed to parse because it was too big to fit within the target
/// type.
NumberTooBig,
/// An invalid unicode value was found in a `\u{...}` escape in a string,
/// only valid unicode scalars can be escaped that way.
InvalidUnicodeValue(u32),
/// A lone underscore was found when parsing a number, since underscores
/// should always be preceded and succeeded with a digit of some form.
LoneUnderscore,
/// A "confusing" unicode character is present in a comment or a string
/// literal, such as a character that changes the direction text is
/// typically displayed in editors. This could cause the human-read
/// version to behave differently than the compiler-visible version, so
/// these are simply rejected for now.
ConfusingUnicode(char),
/// An invalid utf-8 sequence was found in a quoted identifier, such as
/// `$"\ff"`.
InvalidUtf8Id(Utf8Error),
/// An empty identifier was found, or a lone `$`.
EmptyId,
/// An empty identifier was found, or a lone `@`.
EmptyAnnotation,
}
/// A sign token for an integer.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum SignToken {
/// Plus sign: "+",
Plus,
/// Minus sign: "-",
Minus,
}
/// A fully parsed integer from a source string with a payload ready to parse
/// into an integral type.
#[derive(Debug, PartialEq)]
pub struct Integer<'a> {
sign: Option<SignToken>,
val: Cow<'a, str>,
hex: bool,
}
/// Possible parsed float values
#[derive(Debug, PartialEq, Eq)]
pub enum Float<'a> {
/// A float `NaN` representation
Nan {
/// The specific bits to encode for this float, optionally
val: Option<Cow<'a, str>>,
/// Whether or not this is a negative `NaN` or not.
negative: bool,
},
/// An float infinite representation,
Inf {
#[allow(missing_docs)]
negative: bool,
},
/// A parsed and separated floating point value
Val {
/// Whether or not the `integral` and `decimal` are specified in hex
hex: bool,
/// The float parts before the `.`
integral: Cow<'a, str>,
/// The float parts after the `.`
decimal: Option<Cow<'a, str>>,
/// The exponent to multiple this `integral.decimal` portion of the
/// float by. If `hex` is true this is `2^exponent` and otherwise it's
/// `10^exponent`
exponent: Option<Cow<'a, str>>,
},
}
// https://webassembly.github.io/spec/core/text/values.html#text-idchar
macro_rules! idchars {
() => {
b'0'..=b'9'
| b'A'..=b'Z'
| b'a'..=b'z'
| b'!'
| b'#'
| b'$'
| b'%'
| b'&'
| b'\''
| b'*'
| b'+'
| b'-'
| b'.'
| b'/'
| b':'
| b'<'
| b'='
| b'>'
| b'?'
| b'@'
| b'\\'
| b'^'
| b'_'
| b'`'
| b'|'
| b'~'
}
}
impl<'a> Lexer<'a> {
/// Creates a new lexer which will lex the `input` source string.
pub fn new(input: &str) -> Lexer<'_> {
Lexer {
input,
allow_confusing_unicode: false,
}
}
/// Returns the original source input that we're lexing.
pub fn input(&self) -> &'a str {
self.input
}
/// Configures whether "confusing" unicode characters are allowed while
/// lexing.
///
/// If allowed then no error will happen if these characters are found, but
/// otherwise if disallowed a lex error will be produced when these
/// characters are found. Confusing characters are denied by default.
///
/// For now "confusing characters" are primarily related to the "trojan
/// source" problem where it refers to characters which cause humans to read
/// text differently than this lexer, such as characters that alter the
/// left-to-right display of the source code.
pub fn allow_confusing_unicode(&mut self, allow: bool) -> &mut Self {
self.allow_confusing_unicode = allow;
self
}
/// Lexes the next at the byte position `pos` in the input.
///
/// Returns `Some` if a token is found or `None` if we're at EOF.
///
/// The `pos` argument will be updated to point to the next token on a
/// successful parse.
///
/// # Errors
///
/// Returns an error if the input is malformed.
pub fn parse(&self, pos: &mut usize) -> Result<Option<Token>, Error> {
let offset = *pos;
Ok(match self.parse_kind(pos)? {
Some(kind) => Some(Token {
kind,
offset,
len: (*pos - offset).try_into().unwrap(),
}),
None => None,
})
}
fn parse_kind(&self, pos: &mut usize) -> Result<Option<TokenKind>, Error> {
let start = *pos;
// This `match` generally parses the grammar specified at
//
// https://webassembly.github.io/spec/core/text/lexical.html#text-token
let remaining = &self.input.as_bytes()[start..];
let byte = match remaining.first() {
Some(b) => b,
None => return Ok(None),
};
match byte {
// Open-parens check the next character to see if this is the start
// of a block comment, otherwise it's just a bland left-paren
// token.
b'(' => match remaining.get(1) {
Some(b';') => {
let mut level = 1;
// Note that we're doing a byte-level search here for the
// close-delimiter of `;)`. The actual source text is utf-8
// encode in `remaining` but due to how utf-8 works we
// can safely search for an ASCII byte since it'll never
// otherwise appear in the middle of a codepoint and if we
// find it then it's guaranteed to be the right byte.
//
// Mainly we're avoiding the overhead of decoding utf-8
// characters into a Rust `char` since it's otherwise
// unnecessary work.
let mut iter = remaining[2..].iter();
while let Some(ch) = iter.next() {
match ch {
b'(' => {
if let Some(b';') = iter.as_slice().first() {
level += 1;
iter.next();
}
}
b';' => {
if let Some(b')') = iter.as_slice().first() {
level -= 1;
iter.next();
if level == 0 {
let len = remaining.len() - iter.as_slice().len();
let comment = &self.input[start..][..len];
*pos += len;
self.check_confusing_comment(*pos, comment)?;
return Ok(Some(TokenKind::BlockComment));
}
}
}
_ => {}
}
}
Err(self.error(start, LexError::DanglingBlockComment))
}
_ => {
*pos += 1;
Ok(Some(TokenKind::LParen))
}
},
b')' => {
*pos += 1;
Ok(Some(TokenKind::RParen))
}
// https://webassembly.github.io/spec/core/text/lexical.html#white-space
b' ' | b'\n' | b'\r' | b'\t' => {
self.skip_ws(pos);
Ok(Some(TokenKind::Whitespace))
}
c @ (idchars!() | b'"') => {
let (kind, src) = self.parse_reserved(pos)?;
match kind {
// If the reserved token was simply a single string then
// that is converted to a standalone string token
ReservedKind::String => return Ok(Some(TokenKind::String)),
// If only idchars were consumed then this could be a
// specific kind of standalone token we're interested in.
ReservedKind::Idchars => {
// https://webassembly.github.io/spec/core/text/values.html#integers
if let Some(ret) = self.classify_number(src) {
return Ok(Some(ret));
// https://webassembly.github.io/spec/core/text/values.html#text-id
} else if *c == b'$' {
return Ok(Some(TokenKind::Id));
// part of the WebAssembly/annotations proposal
// (no online url yet)
} else if *c == b'@' {
return Ok(Some(TokenKind::Annotation));
// https://webassembly.github.io/spec/core/text/lexical.html#text-keyword
} else if b'a' <= *c && *c <= b'z' {
return Ok(Some(TokenKind::Keyword));
}
}
ReservedKind::IdString => return Ok(Some(TokenKind::Id)),
ReservedKind::AnnotationString => return Ok(Some(TokenKind::Annotation)),
// ... otherwise this was a conglomeration of idchars,
// strings, or just idchars that don't match a prior rule,
// meaning this falls through to the fallback `Reserved`
// token.
ReservedKind::Reserved => {}
}
Ok(Some(TokenKind::Reserved))
}
// This could be a line comment, otherwise `;` is a reserved token.
// The second byte is checked to see if it's a `;;` line comment
//
// Note that this character being considered as part of a
// `reserved` token is part of the annotations proposal.
b';' => match remaining.get(1) {
Some(b';') => {
let remaining = &self.input[*pos..];
let byte_pos = memchr::memchr2(b'\n', b'\r', remaining.as_bytes())
.unwrap_or(remaining.len());
*pos += byte_pos;
let comment = &remaining[..byte_pos];
self.check_confusing_comment(*pos, comment)?;
Ok(Some(TokenKind::LineComment))
}
_ => {
*pos += 1;
Ok(Some(TokenKind::Reserved))
}
},
// Other known reserved tokens other than `;`
//
// Note that these characters being considered as part of a
// `reserved` token is part of the annotations proposal.
b',' | b'[' | b']' | b'{' | b'}' => {
*pos += 1;
Ok(Some(TokenKind::Reserved))
}
_ => {
let ch = self.input[start..].chars().next().unwrap();
Err(self.error(*pos, LexError::Unexpected(ch)))
}
}
}
fn skip_ws(&self, pos: &mut usize) {
// This table is a byte lookup table to determine whether a byte is a
// whitespace byte. There are only 4 whitespace bytes for the `*.wat`
// format right now which are ' ', '\t', '\r', and '\n'. These 4 bytes
// have a '1' in the table below.
//
// Due to how utf-8 works (our input is guaranteed to be utf-8) it is
// known that if these bytes are found they're guaranteed to be the
// whitespace byte, so they can be safely skipped and we don't have to
// do full utf-8 decoding. This means that the goal of this function is
// to find the first non-whitespace byte in `remaining`.
//
// For now this lookup table seems to be the fastest, but projects like
// https://github.com/lemire/despacer show other simd algorithms which
// can possibly accelerate this even more. Note that `*.wat` files often
// have a lot of whitespace so this function is typically quite hot when
// parsing inputs.
#[rustfmt::skip]
const WS: [u8; 256] = [
// \t \n \r
/* 0x00 */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0,
/* 0x10 */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
// ' '
/* 0x20 */ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x30 */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x40 */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x50 */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x60 */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x70 */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x80 */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x90 */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
/* 0xa0 */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
/* 0xb0 */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
/* 0xc0 */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
/* 0xd0 */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
/* 0xe0 */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
/* 0xf0 */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
];
let remaining = &self.input[*pos..];
let non_ws_pos = remaining
.as_bytes()
.iter()
.position(|b| WS[*b as usize] != 1)
.unwrap_or(remaining.len());
*pos += non_ws_pos;
}
/// Splits off a "reserved" token which is then further processed later on
/// to figure out which kind of token it is `depending on `ReservedKind`.
///
/// For more information on this method see the clarification at
/// <https://github.com/WebAssembly/spec/pull/1499> but the general gist is
/// that this is parsing the grammar:
///
/// ```text
/// reserved := (idchar | string)+
/// ```
///
/// which means that it is eating any number of adjacent string/idchar
/// tokens (e.g. `a"b"c`) and returning the classification of what was
/// eaten. The classification assists in determining what the actual token
/// here eaten looks like.
fn parse_reserved(&self, pos: &mut usize) -> Result<(ReservedKind, &'a str), Error> {
let mut idchars = 0u32;
let mut strings = 0u32;
let start = *pos;
while let Some(byte) = self.input.as_bytes().get(*pos) {
match byte {
// Normal `idchars` production which appends to the reserved
// token that's being produced.
idchars!() => {
idchars += 1;
*pos += 1;
}
// https://webassembly.github.io/spec/core/text/values.html#text-string
b'"' => {
strings += 1;
*pos += 1;
let mut it = self.input[*pos..].chars();
let result = Lexer::parse_str(&mut it, self.allow_confusing_unicode);
*pos = self.input.len() - it.as_str().len();
match result {
Ok(_) => {}
Err(e) => {
let err_pos = match &e {
LexError::UnexpectedEof => self.input.len(),
_ => self.input[..*pos].char_indices().next_back().unwrap().0,
};
return Err(self.error(err_pos, e));
}
}
}
// Nothing else is considered part of a reserved token
_ => break,
}
}
let ret = &self.input[start..*pos];
Ok(match (idchars, strings) {
(0, 0) => unreachable!(),
(0, 1) => (ReservedKind::String, ret),
(_, 0) => (ReservedKind::Idchars, ret),
// Pattern match `@"..."` and `$"..."` for string-based
// identifiers and annotations.
(1, 1) if ret.starts_with("$") => (ReservedKind::IdString, ret),
(1, 1) if ret.starts_with("@") => (ReservedKind::AnnotationString, ret),
_ => (ReservedKind::Reserved, ret),
})
}
fn classify_number(&self, src: &str) -> Option<TokenKind> {
let (sign, num) = if let Some(stripped) = src.strip_prefix('+') {
(Some(SignToken::Plus), stripped)
} else if let Some(stripped) = src.strip_prefix('-') {
(Some(SignToken::Minus), stripped)
} else {
(None, src)
};
let negative = sign == Some(SignToken::Minus);
// Handle `inf` and `nan` which are special numbers here
if num == "inf" {
return Some(TokenKind::Float(FloatKind::Inf { negative }));
} else if num == "nan" {
return Some(TokenKind::Float(FloatKind::Nan { negative }));
} else if let Some(stripped) = num.strip_prefix("nan:0x") {
let mut it = stripped.as_bytes().iter();
let has_underscores = skip_underscores(&mut it, |x| char::from(x).is_ascii_hexdigit())?;
if it.next().is_some() {
return None;
}
return Some(TokenKind::Float(FloatKind::NanVal {
negative,
has_underscores,
}));
}
// Figure out if we're a hex number or not
let test_valid: fn(u8) -> bool;
let (mut it, hex) = if let Some(stripped) = num.strip_prefix("0x") {
test_valid = |x: u8| char::from(x).is_ascii_hexdigit();
(stripped.as_bytes().iter(), true)
} else {
test_valid = |x: u8| char::from(x).is_ascii_digit();
(num.as_bytes().iter(), false)
};
// Evaluate the first part, moving out all underscores
let mut has_underscores = skip_underscores(&mut it, test_valid)?;
match it.clone().next() {
// If we're followed by something this may be a float so keep going.
Some(_) => {}
// Otherwise this is a valid integer literal!
None => {
return Some(TokenKind::Integer(IntegerKind {
has_underscores,
sign,
hex,
}))
}
}
// A number can optionally be after the decimal so only actually try to
// parse one if it's there.
if it.clone().next() == Some(&b'.') {
it.next();
match it.clone().next() {
Some(c) if test_valid(*c) => {
if skip_underscores(&mut it, test_valid)? {
has_underscores = true;
}
}
Some(_) | None => {}
}
};
// Figure out if there's an exponential part here to make a float, and
// if so parse it but defer its actual calculation until later.
match (hex, it.next()) {
(true, Some(b'p')) | (true, Some(b'P')) | (false, Some(b'e')) | (false, Some(b'E')) => {
match it.clone().next() {
Some(b'-') => {
it.next();
}
Some(b'+') => {
it.next();
}
_ => {}
}
if skip_underscores(&mut it, |x| char::from(x).is_ascii_digit())? {
has_underscores = true;
}
}
(_, None) => {}
_ => return None,
}
// We should have eaten everything by now, if not then this is surely
// not a float or integer literal.
if it.next().is_some() {
return None;
}
return Some(TokenKind::Float(FloatKind::Normal {
has_underscores,
hex,
}));
fn skip_underscores<'a>(
it: &mut slice::Iter<'_, u8>,
good: fn(u8) -> bool,
) -> Option<bool> {
let mut last_underscore = false;
let mut has_underscores = false;
let first = *it.next()?;
if !good(first) {
return None;
}
while let Some(c) = it.clone().next() {
if *c == b'_' && !last_underscore {
has_underscores = true;
it.next();
last_underscore = true;
continue;
}
if !good(*c) {
break;
}
last_underscore = false;
it.next();
}
if last_underscore {
return None;
}
Some(has_underscores)
}
}
/// Verifies that `comment`, which is about to be returned, has a "confusing
/// unicode character" in it and should instead be transformed into an
/// error.
fn check_confusing_comment(&self, end: usize, comment: &str) -> Result<(), Error> {
if self.allow_confusing_unicode {
return Ok(());
}
// In an effort to avoid utf-8 decoding the entire `comment` the search
// here is a bit more optimized. This checks for the `0xe2` byte because
// in the utf-8 encoding that's the leading encoding byte for all
// "confusing characters". Each instance of 0xe2 is checked to see if it
// starts a confusing character, and if so that's returned.
//
// Also note that 0xe2 will never be found in the middle of a codepoint,
// it's always the start of a codepoint. This means that if our special
// characters show up they're guaranteed to start with 0xe2 bytes.
let bytes = comment.as_bytes();
for pos in memchr::Memchr::new(0xe2, bytes) {
if let Some(c) = comment[pos..].chars().next() {
if is_confusing_unicode(c) {
// Note that `self.cur()` accounts for already having
// parsed `comment`, so we move backwards to where
// `comment` started and then add the index within
// `comment`.
let pos = end - comment.len() + pos;
return Err(self.error(pos, LexError::ConfusingUnicode(c)));
}
}
}
Ok(())
}
fn parse_str(
it: &mut str::Chars<'a>,
allow_confusing_unicode: bool,
) -> Result<Cow<'a, [u8]>, LexError> {
enum State {
Start,
String(Vec<u8>),
}
let orig = it.as_str();
let mut state = State::Start;
loop {
match it.next().ok_or(LexError::UnexpectedEof)? {
'"' => break,
'\\' => {
match state {
State::String(_) => {}
State::Start => {
let pos = orig.len() - it.as_str().len() - 1;
state = State::String(orig[..pos].as_bytes().to_vec());
}
}
let buf = match &mut state {
State::String(b) => b,
State::Start => unreachable!(),
};
match it.next().ok_or(LexError::UnexpectedEof)? {
'"' => buf.push(b'"'),
'\'' => buf.push(b'\''),
't' => buf.push(b'\t'),
'n' => buf.push(b'\n'),
'r' => buf.push(b'\r'),
'\\' => buf.push(b'\\'),
'u' => {
Lexer::must_eat_char(it, '{')?;
let n = Lexer::hexnum(it)?;
let c = char::from_u32(n).ok_or(LexError::InvalidUnicodeValue(n))?;
buf.extend(c.encode_utf8(&mut [0; 4]).as_bytes());
Lexer::must_eat_char(it, '}')?;
}
c1 if c1.is_ascii_hexdigit() => {
let c2 = Lexer::hexdigit(it)?;
buf.push(to_hex(c1) * 16 + c2);
}
c => return Err(LexError::InvalidStringEscape(c)),
}
}
c if (c as u32) < 0x20 || c as u32 == 0x7f => {
return Err(LexError::InvalidStringElement(c))
}
c if !allow_confusing_unicode && is_confusing_unicode(c) => {
return Err(LexError::ConfusingUnicode(c))
}
c => match &mut state {
State::Start => {}
State::String(v) => {
v.extend(c.encode_utf8(&mut [0; 4]).as_bytes());
}
},
}
}
match state {
State::Start => Ok(orig[..orig.len() - it.as_str().len() - 1].as_bytes().into()),
State::String(s) => Ok(s.into()),
}
}
/// Parses an id-or-string-based name from `it`.
///
/// Note that `it` should already have been lexed and this is just
/// extracting the value. If the token lexed was `@a` then this should point
/// to `a`.
///
/// This will automatically detect quoted syntax such as `@"..."` and the
/// byte string will be parsed and validated as utf-8.
///
/// # Errors
///
/// Returns an error if a quoted byte string is found and contains invalid
/// utf-8.
fn parse_name(it: &mut str::Chars<'a>) -> Result<Cow<'a, str>, LexError> {
if it.clone().next() == Some('"') {
it.next();
match Lexer::parse_str(it, true)? {
Cow::Borrowed(bytes) => match std::str::from_utf8(bytes) {
Ok(s) => Ok(Cow::Borrowed(s)),
Err(e) => Err(LexError::InvalidUtf8Id(e)),
},
Cow::Owned(bytes) => match String::from_utf8(bytes) {
Ok(s) => Ok(Cow::Owned(s)),
Err(e) => Err(LexError::InvalidUtf8Id(e.utf8_error())),
},
}
} else {
Ok(Cow::Borrowed(it.as_str()))
}
}
fn hexnum(it: &mut str::Chars<'_>) -> Result<u32, LexError> {
let n = Lexer::hexdigit(it)?;
let mut last_underscore = false;
let mut n = n as u32;
while let Some(c) = it.clone().next() {
if c == '_' {
it.next();
last_underscore = true;
continue;
}
if !c.is_ascii_hexdigit() {
break;
}
last_underscore = false;
it.next();
n = n
.checked_mul(16)
.and_then(|n| n.checked_add(to_hex(c) as u32))
.ok_or(LexError::NumberTooBig)?;
}
if last_underscore {
return Err(LexError::LoneUnderscore);
}
Ok(n)
}
/// Reads a hexidecimal digit from the input stream, returning where it's
/// defined and the hex value. Returns an error on EOF or an invalid hex
/// digit.
fn hexdigit(it: &mut str::Chars<'_>) -> Result<u8, LexError> {
let ch = Lexer::must_char(it)?;
if ch.is_ascii_hexdigit() {
Ok(to_hex(ch))
} else {
Err(LexError::InvalidHexDigit(ch))
}
}
/// Reads the next character from the input string and where it's located,
/// returning an error if the input stream is empty.
fn must_char(it: &mut str::Chars<'_>) -> Result<char, LexError> {
it.next().ok_or(LexError::UnexpectedEof)
}
/// Expects that a specific character must be read next
fn must_eat_char(it: &mut str::Chars<'_>, wanted: char) -> Result<(), LexError> {
let found = Lexer::must_char(it)?;
if wanted == found {
Ok(())
} else {
Err(LexError::Expected { wanted, found })
}
}
/// Creates an error at `pos` with the specified `kind`
fn error(&self, pos: usize, kind: LexError) -> Error {
Error::lex(Span { offset: pos }, self.input, kind)
}
/// Returns an iterator over all tokens in the original source string
/// starting at the `pos` specified.
pub fn iter(&self, mut pos: usize) -> impl Iterator<Item = Result<Token, Error>> + '_ {
std::iter::from_fn(move || self.parse(&mut pos).transpose())
}
/// Returns whether an annotation is present at `pos`. If it is present then
/// `Ok(Some(token))` is returned corresponding to the token, otherwise
/// `Ok(None)` is returned. If the next token cannot be parsed then an error
/// is returned.
pub fn annotation(&self, mut pos: usize) -> Result<Option<Token>, Error> {
let bytes = self.input.as_bytes();
// Quickly reject anything that for sure isn't an annotation since this
// method is used every time an lparen is parsed.
if bytes.get(pos) != Some(&b'@') {
return Ok(None);
}
match self.parse(&mut pos)? {
Some(token) => match token.kind {
TokenKind::Annotation => Ok(Some(token)),
_ => Ok(None),
},
None => Ok(None),
}
}
}
impl Token {
/// Returns the original source text for this token.
pub fn src<'a>(&self, s: &'a str) -> &'a str {
&s[self.offset..][..self.len.try_into().unwrap()]
}
/// Returns the identifier, without the leading `$` symbol, that this token
/// represents.
///
/// Note that this method returns the contents of the identifier. With a
/// string-based identifier this means that escapes have been resolved to
/// their string-based equivalent.
///
/// Should only be used with `TokenKind::Id`.
///
/// # Errors
///
/// Returns an error if this is a string-based identifier (e.g. `$"..."`)
/// which is invalid utf-8.
pub fn id<'a>(&self, s: &'a str) -> Result<Cow<'a, str>, Error> {
let mut ch = self.src(s).chars();
let dollar = ch.next();
debug_assert_eq!(dollar, Some('$'));
let id = Lexer::parse_name(&mut ch).map_err(|e| self.error(s, e))?;
if id.is_empty() {
return Err(self.error(s, LexError::EmptyId));
}
Ok(id)
}
/// Returns the annotation, without the leading `@` symbol, that this token
/// represents.
///