SSS Agenda for WAMR TSC

Yan Dongsheng

b

CONFIDENTIAL

SONY

1/ ‘ 2022/11/24 SSS(SH) Development Center

AITRIOS, Edge Device and ESP32 T —

https://www.aitrios.sony-semicon.com/en
Product introduction - one-stop solution development

Helping partners efficiently develop and implement high-
performance applications and solutions that meet their
specific needs and easily build sensing solutions across edge

devices and cloud services.
Device - a family of devices that fit into different scenarias-

v Portal - maintains a portal for user logins-ahd project
applications, registers approved project members, and
manages application and purchasé information for
commodity markets.

v Console - for building edge-to-cloud solutions quickly

and efficiently.

User customized PPL program is compiled into .aot
running based on WAMR

Coming Soon--- Coming Soon:---
Portal LUCID SENSAIZ LUCID SENSAIZ TBD
SZP123S-001 SZW1235-001 Outdoor cam (TBD)
5MSV/_’ IMX500 Sensor IMX500 Sensor IMX500
Fraduct acthatiae /‘éﬂollu Module ESP32 Controller Madule ESP32 Controller Module ESP32
0s RTOS os RTOS os RTOS

_ e ° Sony AITRIOS announced 3 SmartCamera devices
based on Espressif ESP32

Indoor/outdoor Indoor Indoor/outdoor Indoor Indoor/outdoor Qutdoor

Development/build environment Console Verified devices

2/ 2021/02/05 SSS(SH) Development Center

CONFIDENTIAL

https://www.aitrios.sony-semicon.com/en

Looking Back — Wamr bring up for Esp32

~— Wasm VM lectotype

¥ Nuttx support both WAMR and

WASM alreadly
¥ WAMR support AOT, but WASM3
does not

¥ WAMR & WASM3 are the

preferred wasm runtime, WAMR

has higher priority than WASM3

Wamr support nuttx
Wamr support C/C++
Wamr support Aot

Wamr has lower footprint

ANANA NN

Esp32 based device

Resource limited device
320K RAM

4M flash

4M PSRAM

ANANENEN

H bytecodealliance /
wasm-micro-runtime

Public

WebAssembly Micro Runtime (WAMR)

3/

2022/11/24

— Bringup WAMR on resource limited device

1

RAM
(-] -] -]-]-]

. Insufficient IRAM issue

stack

heap

bss

@ | data

instruction

insufficient

2. 256K limitation issue

Vision App
(wasm)

Wamr Compiler

X

Far far away

v & ESPRESSIF

LLVM Xtensa Backend

4

=

v

App text
size more
than 256K

3. XIP bring up on ESP32, 4 bytes alignment read in VRAM

VRAM

' Not contribute, a temp solution

Flash

Enable the --text-section-literal, to separate the .literal into several
sub literal sections and distributed in .text segment, to avoid far distance

reference

Enable the “Extended L32R option” in its backend for xtensa instruction

generation

. Contributed

SSS(SH) Development Center

CONFIDENTIAL

Current Concerns

« To implement XIP on ESP32.
« Stability issue debug tools

« Any general way to debug the .aot, IR

debug tools? (the general IR

interpreter like Ili cannot simulate the

exec_env context)
« General way to eliminate external
reference.

« Case by case currently. risky to deploy

user’s .aot when it has external
reference.

« Better to provide tools to check if
the .aot have the reference in XIP
mode before it's deployed.

« Performance concerns.

« Any way to improve the table lookup
speed? Is it possible to make const
data in cache?

=10 \'D'4 4/ \ 2022/11/24 SSS(SH) Development Center

static bool

load_native_symbol_section(const uint8 *buf, const uint8 *buf_end,
AOTModule *module, bool is_load_from_file_buf,
char *error_buf, uint32 error_buf_size)

...... [32bit array in 32bit system]

if (cnt > o) L
module->native_symbol_list |= wasm_runtime_malloc(cnt * sizeof(void *));
1T (module-snative _symbol_list == NULL) {
set_error_buf(error_buf, error_buf_size,
"malloc native symbol list failed");

goto fail;
}

for (i = cnt - 1; 1 >=0; i--) {
read_string(p, p_end, symbol);
if (!strncmp(symbol, "f32#", 4) || !strncmp(symbol, "i32#", 4)) {
uint32 u32;
/* Resolve the raw int bits of 32 const */
if (lstr2uint32(symbol + 4, &u32)) {
set_error_buf_v(error_buf, error_buf_size,
"resolve symbol %s failed", symbol);

L32bit writing

goto fail;
1

*(uint32 *)(&module->native_symbol_ list[i]) = u32;

b
else if (!strncmp(symbol, "f64#", 4)
|| !strncmp(symbol, "i64#", 4))
uinté4 u64d;
/* Resolve the raw int bits of 64 const
if (lstr2uinté4(symbol + 4, &u64)) {
set_error_buf_v(error_buf, error_buf

. . "resolve symbol %s
64bit writing goto fail; Y
B

1
*(uinte4 *)(&module->native_symbol_list[i]) = u64;

32bit element is next to its

» The value has overlap while
64bit neighbor.

2
d", symbol);

}

b

CONFIDENTIAL

Road Map in Future for SSS (Maybe Add More Later)

« Run spec test using C runner rather than
python script on resource limited device.
« We already have one, can contribute it in

sensing pipeline

fetch ppl upload

future -
« To support memory sharing between modules
« Sensing data would be processed in a
T Sensor System Interface
pipeline, to share the data from one
node(each would be a wasm) to anther is Channel Erame Streaming
reasonable demand. Expect to share the

data crossing modules in a general way. Status 0s

« Wasi-sensor standardization RS
« SSS already has a set of API that could :

provide general service of sensor, such as SI WASLSENSOR

SmartCamera, iTof, Viewing sensor. And |

the API has C/C++/Java/Python version,

we'd like make it work for wasm also, then

the standardization for wasi is necessary.

kb

CONFIDENTIAL

5/ ‘ 2022/11/24 SSS(SH) Development Center

SONY

That’s all Thanks

b

CONFIDENTIAL

SONY

6/ ‘ 2022/11/24 SSS(SH) Development Center

