-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
254 lines (215 loc) · 6.55 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import pickle
from utils.set_seed import set_seed
import datetime
import os
import numpy as np
import yaml
import sys
from collections import OrderedDict
import pandas as pd
import tensorflow.keras.optimizers as optim
import tensorflow.keras
def create_agents(
*,
image_shape, number_of_images, embedding_size, vocabulary_size, sender_type,
temperature, optimizer, algorithm, max_memory, exploration_decay, exploration_floor,
role_mode, shared_embedding, role_alteration=False,
**kwargs
):
# SET UP AGENTS
learning_rate = 0.1
optimizers = {
"adam": optim.Adam,
"sgd": optim.SGD,
"adadelta": optim.Adadelta,
"rmsprop": optim.RMSprop
}
agent_settings = {
"n_images": number_of_images,
"input_image_shape": image_shape,
"embedding_size": embedding_size,
"vocabulary_size": vocabulary_size,
"temperature": temperature,
"optimizer": optimizers[optimizer](lr=learning_rate),
"sender_type": sender_type,
"max_memory": max_memory,
"exploration_start": 0,
"exploration_decay": exploration_decay,
"exploration_floor": exploration_floor
}
tensorflow.keras.backend.clear_session()
if algorithm == "reinforce":
from agent.reinforce import Sender, Receiver, MultiAgent
elif algorithm == "qlearning":
from agent.qlearning import Sender, Receiver, MultiAgent
else:
raise ValueError(f"Expected 'reinforce' or 'qlearning' algorithm, got '{algorithm}'")
if role_mode == "switch":
sender = MultiAgent(
active_role="sender",
shared_embedding=shared_embedding,
**agent_settings
)
receiver = MultiAgent(
active_role="receiver",
shared_embedding=shared_embedding,
**agent_settings
)
if role_alteration:
sender.switch_role()
receiver.switch_role()
sender, receiver = receiver, sender
elif role_mode == "static":
sender = Sender(**agent_settings)
receiver = Receiver(**agent_settings)
else:
raise ValueError(f"Role mode must be either 'static' or 'switch', not '{role_mode}'")
return sender, receiver
def run_one(
agent1, agent2, game, testset,
seed=None
):
sender = agent1
receiver = agent2
role_setting = 0
metrics = "episode role_setting images symbol guess success".split(" ")
dtypes = [
pd.Int32Dtype(), bool, object, pd.Int32Dtype(), pd.Int32Dtype(),
pd.Float64Dtype()
]
test_log = pd.DataFrame(columns=metrics)
for column, dtype in zip(metrics, dtypes):
test_log[column] = test_log[column].astype(dtype)
if seed is not None:
set_seed(seed)
episode = 0
exit_status = "full"
error = False
batch_log = {metric: [] for metric in metrics}
for test in testset:
episode += 1
game.reset()
try:
# Sender turn
sender_ids = test["sender_ids"]
sender_state = game.get_sender_state_from_ids(
ids=sender_ids,
expand=True
)
sender_probs = np.squeeze(sender.predict(
state=sender_state
))
sender_action = sender.choose_action(sender_probs)
# Receiver turn
receiver_ids = test["receiver_ids"]
receiver_pos = test["receiver_pos"]
receiver_state = game.get_receiver_state_from_ids(
receiver_ids,
receiver_pos,
sender_action,
expand=True
)
receiver_probs = np.squeeze(receiver.predict(
state=receiver_state
))
receiver_action = receiver.choose_action(receiver_probs)
except Exception as e:
print("\n", "ERROR", e)
error = True
break
# Evaluate turn and remember
sender_reward, receiver_reward, success = game.evaluate_guess(receiver_action)
batch_log["episode"].append(episode)
batch_log["role_setting"].append(role_setting)
batch_log["images"].append(sender_ids)
batch_log["symbol"].append(sender_action)
batch_log["guess"].append(receiver_action)
batch_log["success"].append(success)
if not episode % 200:
print(f"\r{episode} games played", end="")
test_log = test_log.append(pd.DataFrame(batch_log))
if error:
return test_log, "error"
print()
return test_log, exit_status
def compute_final_stats(training_log, exit_status="full", analysis_window=None):
if analysis_window:
sample = training_log.tail(analysis_window)
else:
sample = training_log
stats = {
"exit_status": exit_status,
"final_episode": training_log.iloc[-1]["episode"],
"mean_success": sample["success"].mean()
}
frequent_symbols = sample["symbol"].value_counts(normalize=True)
n_frequent_symbols = 0
freq_sum = 0
for freq in frequent_symbols:
n_frequent_symbols += 1
freq_sum += freq
if freq_sum >= 0.9:
break
stats["n_frequent_symbols"] = n_frequent_symbols
return stats
def run_many(test_path, dataset, model_path, model_folders, out_name, role_alteration, seed=None):
stats_file = f"{out_name}.results.csv"
# LOAD DATASET
from utils.dataprep import load_emb_pickled
metadata, embeddings = load_emb_pickled(dataset)
filenames = metadata.get("fnames")
categories = metadata.get("categories")
image_shape = [len(embeddings[0])]
# CREATE GAME
game_settings = {
"images": embeddings,
"categories": categories,
"images_filenames": filenames
}
from game import Game
game = Game(**game_settings)
# LOAD TEST
with open(test_path, "rb") as f:
test = pickle.load(f)
for folder in model_folders:
settings_path = os.path.join(model_path, folder, "settings.yml")
print(f"Loading model from {settings_path}")
with open(settings_path) as f:
settings = yaml.safe_load(f)
settings["image_shape"] = image_shape
agent1, agent2 = create_agents(role_alteration=role_alteration, **settings)
try:
agent1.load(os.path.join(model_path, folder, "agent1"))
agent2.load(os.path.join(model_path, folder, "agent2"))
except Exception as e:
print(f"Cannot load agents: {e}")
continue
print(f"Testing model {folder}")
test_log, exit_status = run_one(agent1, agent2, game, test, seed)
test_log_file = os.path.join(model_path, folder, f"{out_name}.csv")
test_log.to_csv(test_log_file)
print(f"Test log saved to {test_log_file}")
stats = compute_final_stats(test_log, exit_status)
# append stats to stats_file
entry = OrderedDict()
entry.update(settings)
entry.update(stats)
# create header if stats_file is not initzd
if not os.path.isfile(stats_file):
with open(stats_file, "w") as f:
print(",".join(entry.keys()), file=f)
with open(stats_file, "a") as f:
print(",".join(map(str, entry.values())), file=f)
print(f"Summary written to {stats_file}")
def main(config_file):
with open(config_file, "r") as f:
settings = yaml.load(f)
if isinstance(settings["model_folders"], str):
settings["model_folders"] = settings["model_folders"].strip().split("\n")
run_many(**settings)
if __name__ == "__main__":
if len(sys.argv) == 2:
config = sys.argv[1]
else:
config = "settings-test.yml"
main(config)