-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathrsvg-affine.c
270 lines (250 loc) · 7.93 KB
/
rsvg-affine.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
/* -*- Mode: C; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/* vim: set sw=4 sts=4 ts=4 expandtab: */
/* Libart_LGPL - library of basic graphic primitives
* Copyright (C) 1998 Raph Levien
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
/* Simple manipulations with affine transformations */
#include "config.h"
#include "rsvg-private.h"
#include <math.h>
#include <stdio.h>
#include <string.h>
/**
* _rsvg_affine_invert: Find the inverse of an affine transformation.
* @dst: Where the resulting affine is stored.
* @src: The original affine transformation.
*
* All non-degenerate affine transforms are invertible. If the original
* affine is degenerate or nearly so, expect numerical instability and
* very likely core dumps on Alpha and other fp-picky architectures.
* Otherwise, @dst multiplied with @src, or @src multiplied with @dst
* will be (to within roundoff error) the identity affine.
**/
void
_rsvg_affine_invert (double dst[6], const double src[6])
{
double r_det;
r_det = 1.0 / (src[0] * src[3] - src[1] * src[2]);
dst[0] = src[3] * r_det;
dst[1] = -src[1] * r_det;
dst[2] = -src[2] * r_det;
dst[3] = src[0] * r_det;
dst[4] = -src[4] * dst[0] - src[5] * dst[2];
dst[5] = -src[4] * dst[1] - src[5] * dst[3];
}
/**
* _rsvg_affine_flip: Flip an affine transformation horizontally and/or vertically.
* @dst_affine: Where the resulting affine is stored.
* @src_affine: The original affine transformation.
* @horiz: Whether or not to flip horizontally.
* @vert: Whether or not to flip horizontally.
*
* Flips the affine transform. FALSE for both @horiz and @vert implements
* a simple copy operation. TRUE for both @horiz and @vert is a
* 180 degree rotation. It is ok for @src_affine and @dst_affine to
* be equal pointers.
**/
void
_rsvg_affine_flip (double dst_affine[6], const double src_affine[6], int horz, int vert)
{
dst_affine[0] = horz ? -src_affine[0] : src_affine[0];
dst_affine[1] = horz ? -src_affine[1] : src_affine[1];
dst_affine[2] = vert ? -src_affine[2] : src_affine[2];
dst_affine[3] = vert ? -src_affine[3] : src_affine[3];
dst_affine[4] = horz ? -src_affine[4] : src_affine[4];
dst_affine[5] = vert ? -src_affine[5] : src_affine[5];
}
#define EPSILON 1e-6
/**
* _rsvg_affine_multiply: Multiply two affine transformation matrices.
* @dst: Where to store the result.
* @src1: The first affine transform to multiply.
* @src2: The second affine transform to multiply.
*
* Multiplies two affine transforms together, i.e. the resulting @dst
* is equivalent to doing first @src1 then @src2. Note that the
* PostScript concat operator multiplies on the left, i.e. "M concat"
* is equivalent to "CTM = multiply (M, CTM)";
*
* It is safe to call this function with @dst equal to @src1 or @src2.
**/
void
_rsvg_affine_multiply (double dst[6], const double src1[6], const double src2[6])
{
double d0, d1, d2, d3, d4, d5;
d0 = src1[0] * src2[0] + src1[1] * src2[2];
d1 = src1[0] * src2[1] + src1[1] * src2[3];
d2 = src1[2] * src2[0] + src1[3] * src2[2];
d3 = src1[2] * src2[1] + src1[3] * src2[3];
d4 = src1[4] * src2[0] + src1[5] * src2[2] + src2[4];
d5 = src1[4] * src2[1] + src1[5] * src2[3] + src2[5];
dst[0] = d0;
dst[1] = d1;
dst[2] = d2;
dst[3] = d3;
dst[4] = d4;
dst[5] = d5;
}
/**
* _rsvg_affine_identity: Set up the identity matrix.
* @dst: Where to store the resulting affine transform.
*
* Sets up an identity matrix.
**/
void
_rsvg_affine_identity (double dst[6])
{
dst[0] = 1;
dst[1] = 0;
dst[2] = 0;
dst[3] = 1;
dst[4] = 0;
dst[5] = 0;
}
/**
* _rsvg_affine_scale: Set up a scaling matrix.
* @dst: Where to store the resulting affine transform.
* @sx: X scale factor.
* @sy: Y scale factor.
*
* Sets up a scaling matrix.
**/
void
_rsvg_affine_scale (double dst[6], double sx, double sy)
{
dst[0] = sx;
dst[1] = 0;
dst[2] = 0;
dst[3] = sy;
dst[4] = 0;
dst[5] = 0;
}
/**
* _rsvg_affine_rotate: Set up a rotation affine transform.
* @dst: Where to store the resulting affine transform.
* @theta: Rotation angle in degrees.
*
* Sets up a rotation matrix. In the standard libart coordinate
* system, in which increasing y moves downward, this is a
* counterclockwise rotation. In the standard PostScript coordinate
* system, which is reversed in the y direction, it is a clockwise
* rotation.
**/
void
_rsvg_affine_rotate (double dst[6], double theta)
{
double s, c;
s = sin (theta * M_PI / 180.0);
c = cos (theta * M_PI / 180.0);
dst[0] = c;
dst[1] = s;
dst[2] = -s;
dst[3] = c;
dst[4] = 0;
dst[5] = 0;
}
/**
* _rsvg_affine_shear: Set up a shearing matrix.
* @dst: Where to store the resulting affine transform.
* @theta: Shear angle in degrees.
*
* Sets up a shearing matrix. In the standard libart coordinate system
* and a small value for theta, || becomes \\. Horizontal lines remain
* unchanged.
**/
void
_rsvg_affine_shear (double dst[6], double theta)
{
double t;
t = tan (theta * M_PI / 180.0);
dst[0] = 1;
dst[1] = 0;
dst[2] = t;
dst[3] = 1;
dst[4] = 0;
dst[5] = 0;
}
/**
* _rsvg_affine_translate: Set up a translation matrix.
* @dst: Where to store the resulting affine transform.
* @tx: X translation amount.
* @tx: Y translation amount.
*
* Sets up a translation matrix.
**/
void
_rsvg_affine_translate (double dst[6], double tx, double ty)
{
dst[0] = 1;
dst[1] = 0;
dst[2] = 0;
dst[3] = 1;
dst[4] = tx;
dst[5] = ty;
}
/**
* _rsvg_affine_expansion: Find the affine's expansion factor.
* @src: The affine transformation.
*
* Finds the expansion factor, i.e. the square root of the factor
* by which the affine transform affects area. In an affine transform
* composed of scaling, rotation, shearing, and translation, returns
* the amount of scaling.
*
* Return value: the expansion factor.
**/
double
_rsvg_affine_expansion (const double src[6])
{
return sqrt (fabs (src[0] * src[3] - src[1] * src[2]));
}
/**
* _rsvg_affine_rectilinear: Determine whether the affine transformation is rectilinear.
* @src: The original affine transformation.
*
* Determines whether @src is rectilinear, i.e. grid-aligned
* rectangles are transformed to other grid-aligned rectangles. The
* implementation has epsilon-tolerance for roundoff errors.
*
* Return value: TRUE if @src is rectilinear.
**/
int
_rsvg_affine_rectilinear (const double src[6])
{
return ((fabs (src[1]) < EPSILON && fabs (src[2]) < EPSILON) ||
(fabs (src[0]) < EPSILON && fabs (src[3]) < EPSILON));
}
/**
* _rsvg_affine_equal: Determine whether two affine transformations are equal.
* @matrix1: An affine transformation.
* @matrix2: Another affine transformation.
*
* Determines whether @matrix1 and @matrix2 are equal, with
* epsilon-tolerance for roundoff errors.
*
* Return value: TRUE if @matrix1 and @matrix2 are equal.
**/
int
_rsvg_affine_equal (double matrix1[6], double matrix2[6])
{
return (fabs (matrix1[0] - matrix2[0]) < EPSILON &&
fabs (matrix1[1] - matrix2[1]) < EPSILON &&
fabs (matrix1[2] - matrix2[2]) < EPSILON &&
fabs (matrix1[3] - matrix2[3]) < EPSILON &&
fabs (matrix1[4] - matrix2[4]) < EPSILON && fabs (matrix1[5] - matrix2[5]) < EPSILON);
}