From e673ced3ea2d43a3373dbd30dc30c047c68dd8f2 Mon Sep 17 00:00:00 2001 From: Jonathan Simon Date: Tue, 10 Mar 2020 13:00:04 -0700 Subject: [PATCH] Remove Natural Language samples not included docs. [(#3074)](https://github.com/GoogleCloudPlatform/python-docs-samples/issues/3074) Remove Natural Language samples that are no longer included in product documentation. The samples used for documentation are now located in https://github.com/googleapis/python-language/tree/master/samples/v1 and thus have replaced the samples in this repo. --- samples/snippets/README.rst | 56 +---- samples/snippets/README.rst.in | 2 - samples/snippets/snippets.py | 395 ------------------------------ samples/snippets/snippets_test.py | 80 ------ 4 files changed, 2 insertions(+), 531 deletions(-) delete mode 100644 samples/snippets/snippets.py delete mode 100644 samples/snippets/snippets_test.py diff --git a/samples/snippets/README.rst b/samples/snippets/README.rst index 97f79a34..e0d71946 100644 --- a/samples/snippets/README.rst +++ b/samples/snippets/README.rst @@ -53,7 +53,7 @@ Install Dependencies $ virtualenv env $ source env/bin/activate -#. Install the dependencies needed to run the samples. +#. Install the dependencies needed to run the sample. .. code-block:: bash @@ -62,7 +62,7 @@ Install Dependencies .. _pip: https://pip.pypa.io/ .. _virtualenv: https://virtualenv.pypa.io/ -Samples +Sample ------------------------------------------------------------------------------- Quickstart @@ -81,58 +81,6 @@ To run this sample: $ python quickstart.py -Snippets -+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ - -.. image:: https://gstatic.com/cloudssh/images/open-btn.png - :target: https://console.cloud.google.com/cloudshell/open?git_repo=https://github.com/GoogleCloudPlatform/python-docs-samples&page=editor&open_in_editor=language/cloud-client/v1/snippets.py,language/cloud-client/v1/README.rst - - - - -To run this sample: - -.. code-block:: bash - - $ python snippets.py - - usage: snippets.py [-h] - {classify-text,classify-file,sentiment-entities-text,sentiment-entities-file,sentiment-text,sentiment-file,entities-text,entities-file,syntax-text,syntax-file} - ... - - This application demonstrates how to perform basic operations with the - Google Cloud Natural Language API - - For more information, the documentation at - https://cloud.google.com/natural-language/docs. - - positional arguments: - {classify-text,classify-file,sentiment-entities-text,sentiment-entities-file,sentiment-text,sentiment-file,entities-text,entities-file,syntax-text,syntax-file} - classify-text Classifies content categories of the provided text. - classify-file Classifies content categories of the text in a Google - Cloud Storage file. - sentiment-entities-text - Detects entity sentiment in the provided text. - sentiment-entities-file - Detects entity sentiment in a Google Cloud Storage - file. - sentiment-text Detects sentiment in the text. - sentiment-file Detects sentiment in the file located in Google Cloud - Storage. - entities-text Detects entities in the text. - entities-file Detects entities in the file located in Google Cloud - Storage. - syntax-text Detects syntax in the text. - syntax-file Detects syntax in the file located in Google Cloud - Storage. - - optional arguments: - -h, --help show this help message and exit - - - - - The client library ------------------------------------------------------------------------------- diff --git a/samples/snippets/README.rst.in b/samples/snippets/README.rst.in index 06b7ff3e..9bf38dbf 100644 --- a/samples/snippets/README.rst.in +++ b/samples/snippets/README.rst.in @@ -23,8 +23,6 @@ setup: samples: - name: Quickstart file: quickstart.py -- name: Snippets - file: snippets.py show_help: true cloud_client_library: true diff --git a/samples/snippets/snippets.py b/samples/snippets/snippets.py deleted file mode 100644 index a95110a2..00000000 --- a/samples/snippets/snippets.py +++ /dev/null @@ -1,395 +0,0 @@ -#!/usr/bin/env python - -# Copyright 2018 Google, LLC. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -"""This application demonstrates how to perform basic operations with the -Google Cloud Natural Language API - -For more information, the documentation at -https://cloud.google.com/natural-language/docs. -""" - -import argparse -import sys - - -def sentiment_text(): - # [START language_sentiment_text] - from google.cloud import language - from google.cloud.language import enums - from google.cloud.language import types - - text = 'Hello, world!' - - client = language.LanguageServiceClient() - - try: - text = text.decode('utf-8') - except AttributeError: - pass - - # Instantiates a plain text document. - # [START language_python_migration_sentiment_text] - document = types.Document( - content=text, - type=enums.Document.Type.PLAIN_TEXT) - - # Detects sentiment in the document. You can also analyze HTML with: - # document.type == enums.Document.Type.HTML - sentiment = client.analyze_sentiment(document).document_sentiment - - print('Score: {}'.format(sentiment.score)) - print('Magnitude: {}'.format(sentiment.magnitude)) - # [END language_python_migration_sentiment_text] - # [END language_sentiment_text] - - -def sentiment_file(): - # [START language_sentiment_gcs] - from google.cloud import language - from google.cloud.language import enums - from google.cloud.language import types - - gcs_uri = 'gs://cloud-samples-data/language/hello.txt' - - client = language.LanguageServiceClient() - - # Instantiates a plain text document. - # [START language_python_migration_document_gcs] - document = types.Document( - gcs_content_uri=gcs_uri, - type=enums.Document.Type.PLAIN_TEXT) - # [END language_python_migration_document_gcs] - - # Detects sentiment in the document. You can also analyze HTML with: - # document.type == enums.Document.Type.HTML - sentiment = client.analyze_sentiment(document).document_sentiment - - print('Score: {}'.format(sentiment.score)) - print('Magnitude: {}'.format(sentiment.magnitude)) - # [END language_sentiment_gcs] - - -def entities_text(): - # [START language_entities_text] - import six - from google.cloud import language - from google.cloud.language import enums - from google.cloud.language import types - - text = 'President Kennedy spoke at the White House.' - - client = language.LanguageServiceClient() - - if isinstance(text, six.binary_type): - text = text.decode('utf-8') - - # Instantiates a plain text document. - # [START language_python_migration_entities_text] - # [START language_python_migration_document_text] - document = types.Document( - content=text, - type=enums.Document.Type.PLAIN_TEXT) - # [END language_python_migration_document_text] - - # Detects entities in the document. You can also analyze HTML with: - # document.type == enums.Document.Type.HTML - entities = client.analyze_entities(document).entities - - for entity in entities: - entity_type = enums.Entity.Type(entity.type) - print('=' * 20) - print(u'{:<16}: {}'.format('name', entity.name)) - print(u'{:<16}: {}'.format('type', entity_type.name)) - print(u'{:<16}: {}'.format('salience', entity.salience)) - print(u'{:<16}: {}'.format('wikipedia_url', - entity.metadata.get('wikipedia_url', '-'))) - print(u'{:<16}: {}'.format('mid', entity.metadata.get('mid', '-'))) - # [END language_python_migration_entities_text] - # [END language_entities_text] - - -def entities_file(): - # [START language_entities_gcs] - from google.cloud import language - from google.cloud.language import enums - from google.cloud.language import types - - gcs_uri = 'gs://cloud-samples-data/language/president.txt' - - client = language.LanguageServiceClient() - - # Instantiates a plain text document. - document = types.Document( - gcs_content_uri=gcs_uri, - type=enums.Document.Type.PLAIN_TEXT) - - # Detects sentiment in the document. You can also analyze HTML with: - # document.type == enums.Document.Type.HTML - entities = client.analyze_entities(document).entities - - for entity in entities: - entity_type = enums.Entity.Type(entity.type) - print('=' * 20) - print(u'{:<16}: {}'.format('name', entity.name)) - print(u'{:<16}: {}'.format('type', entity_type.name)) - print(u'{:<16}: {}'.format('salience', entity.salience)) - print(u'{:<16}: {}'.format('wikipedia_url', - entity.metadata.get('wikipedia_url', '-'))) - print(u'{:<16}: {}'.format('mid', entity.metadata.get('mid', '-'))) - # [END language_entities_gcs] - - -def syntax_text(): - # [START language_syntax_text] - import six - from google.cloud import language - from google.cloud.language import enums - from google.cloud.language import types - - text = 'President Kennedy spoke at the White House.' - - client = language.LanguageServiceClient() - - if isinstance(text, six.binary_type): - text = text.decode('utf-8') - - # Instantiates a plain text document. - # [START language_python_migration_syntax_text] - document = types.Document( - content=text, - type=enums.Document.Type.PLAIN_TEXT) - - # Detects syntax in the document. You can also analyze HTML with: - # document.type == enums.Document.Type.HTML - tokens = client.analyze_syntax(document).tokens - - for token in tokens: - part_of_speech_tag = enums.PartOfSpeech.Tag(token.part_of_speech.tag) - print(u'{}: {}'.format(part_of_speech_tag.name, - token.text.content)) - # [END language_python_migration_syntax_text] - # [END language_syntax_text] - - -def syntax_file(): - # [START language_syntax_gcs] - from google.cloud import language - from google.cloud.language import enums - from google.cloud.language import types - - gcs_uri = 'gs://cloud-samples-data/language/president.txt' - - client = language.LanguageServiceClient() - - # Instantiates a plain text document. - document = types.Document( - gcs_content_uri=gcs_uri, - type=enums.Document.Type.PLAIN_TEXT) - - # Detects syntax in the document. You can also analyze HTML with: - # document.type == enums.Document.Type.HTML - tokens = client.analyze_syntax(document).tokens - - for token in tokens: - part_of_speech_tag = enums.PartOfSpeech.Tag(token.part_of_speech.tag) - print(u'{}: {}'.format(part_of_speech_tag.name, - token.text.content)) - # [END language_syntax_gcs] - - -def entity_sentiment_text(): - # [START language_entity_sentiment_text] - import six - from google.cloud import language - from google.cloud.language import enums - from google.cloud.language import types - - text = 'President Kennedy spoke at the White House.' - - client = language.LanguageServiceClient() - - if isinstance(text, six.binary_type): - text = text.decode('utf-8') - - document = types.Document( - content=text.encode('utf-8'), - type=enums.Document.Type.PLAIN_TEXT) - - # Detect and send native Python encoding to receive correct word offsets. - encoding = enums.EncodingType.UTF32 - if sys.maxunicode == 65535: - encoding = enums.EncodingType.UTF16 - - result = client.analyze_entity_sentiment(document, encoding) - - for entity in result.entities: - print('Mentions: ') - print(u'Name: "{}"'.format(entity.name)) - for mention in entity.mentions: - print(u' Begin Offset : {}'.format(mention.text.begin_offset)) - print(u' Content : {}'.format(mention.text.content)) - print(u' Magnitude : {}'.format(mention.sentiment.magnitude)) - print(u' Sentiment : {}'.format(mention.sentiment.score)) - print(u' Type : {}'.format(mention.type)) - print(u'Salience: {}'.format(entity.salience)) - print(u'Sentiment: {}\n'.format(entity.sentiment)) - # [END language_entity_sentiment_text] - - -def entity_sentiment_file(): - # [START language_entity_sentiment_gcs] - from google.cloud import language - from google.cloud.language import enums - from google.cloud.language import types - - gcs_uri = 'gs://cloud-samples-data/language/president.txt' - - client = language.LanguageServiceClient() - - document = types.Document( - gcs_content_uri=gcs_uri, - type=enums.Document.Type.PLAIN_TEXT) - - # Detect and send native Python encoding to receive correct word offsets. - encoding = enums.EncodingType.UTF32 - if sys.maxunicode == 65535: - encoding = enums.EncodingType.UTF16 - - result = client.analyze_entity_sentiment(document, encoding) - - for entity in result.entities: - print(u'Name: "{}"'.format(entity.name)) - for mention in entity.mentions: - print(u' Begin Offset : {}'.format(mention.text.begin_offset)) - print(u' Content : {}'.format(mention.text.content)) - print(u' Magnitude : {}'.format(mention.sentiment.magnitude)) - print(u' Sentiment : {}'.format(mention.sentiment.score)) - print(u' Type : {}'.format(mention.type)) - print(u'Salience: {}'.format(entity.salience)) - print(u'Sentiment: {}\n'.format(entity.sentiment)) - # [END language_entity_sentiment_gcs] - - -def classify_text(): - # [START language_classify_text] - import six - from google.cloud import language - from google.cloud.language import enums - from google.cloud.language import types - - text = 'Android is a mobile operating system developed by Google, ' \ - 'based on the Linux kernel and designed primarily for ' \ - 'touchscreen mobile devices such as smartphones and tablets.' - - client = language.LanguageServiceClient() - - if isinstance(text, six.binary_type): - text = text.decode('utf-8') - - document = types.Document( - content=text.encode('utf-8'), - type=enums.Document.Type.PLAIN_TEXT) - - categories = client.classify_text(document).categories - - for category in categories: - print(u'=' * 20) - print(u'{:<16}: {}'.format('name', category.name)) - print(u'{:<16}: {}'.format('confidence', category.confidence)) - # [END language_classify_text] - - -def classify_file(): - # [START language_classify_gcs] - from google.cloud import language - from google.cloud.language import enums - from google.cloud.language import types - - gcs_uri = 'gs://cloud-samples-data/language/android.txt' - - client = language.LanguageServiceClient() - - document = types.Document( - gcs_content_uri=gcs_uri, - type=enums.Document.Type.PLAIN_TEXT) - - categories = client.classify_text(document).categories - - for category in categories: - print(u'=' * 20) - print(u'{:<16}: {}'.format('name', category.name)) - print(u'{:<16}: {}'.format('confidence', category.confidence)) - # [END language_classify_gcs] - - -if __name__ == '__main__': - parser = argparse.ArgumentParser( - description=__doc__, - formatter_class=argparse.RawDescriptionHelpFormatter) - subparsers = parser.add_subparsers(dest='command') - - classify_text_parser = subparsers.add_parser( - 'classify-text', help=classify_text.__doc__) - - classify_text_parser = subparsers.add_parser( - 'classify-file', help=classify_file.__doc__) - - sentiment_entities_text_parser = subparsers.add_parser( - 'sentiment-entities-text', help=entity_sentiment_text.__doc__) - - sentiment_entities_file_parser = subparsers.add_parser( - 'sentiment-entities-file', help=entity_sentiment_file.__doc__) - - sentiment_text_parser = subparsers.add_parser( - 'sentiment-text', help=sentiment_text.__doc__) - - sentiment_file_parser = subparsers.add_parser( - 'sentiment-file', help=sentiment_file.__doc__) - - entities_text_parser = subparsers.add_parser( - 'entities-text', help=entities_text.__doc__) - - entities_file_parser = subparsers.add_parser( - 'entities-file', help=entities_file.__doc__) - - syntax_text_parser = subparsers.add_parser( - 'syntax-text', help=syntax_text.__doc__) - - syntax_file_parser = subparsers.add_parser( - 'syntax-file', help=syntax_file.__doc__) - - args = parser.parse_args() - - if args.command == 'sentiment-text': - sentiment_text() - elif args.command == 'sentiment-file': - sentiment_file() - elif args.command == 'entities-text': - entities_text() - elif args.command == 'entities-file': - entities_file() - elif args.command == 'syntax-text': - syntax_text() - elif args.command == 'syntax-file': - syntax_file() - elif args.command == 'sentiment-entities-text': - entity_sentiment_text() - elif args.command == 'sentiment-entities-file': - entity_sentiment_file() - elif args.command == 'classify-text': - classify_text() - elif args.command == 'classify-file': - classify_file() diff --git a/samples/snippets/snippets_test.py b/samples/snippets/snippets_test.py deleted file mode 100644 index ef09b1a1..00000000 --- a/samples/snippets/snippets_test.py +++ /dev/null @@ -1,80 +0,0 @@ -# -*- coding: utf-8 -*- -# Copyright 2018 Google, LLC. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import snippets - - -def test_sentiment_text(capsys): - snippets.sentiment_text() - out, _ = capsys.readouterr() - assert 'Score: ' in out - - -def test_sentiment_file(capsys): - snippets.sentiment_file() - out, _ = capsys.readouterr() - assert 'Score: ' in out - - -def test_entities_text(capsys): - snippets.entities_text() - out, _ = capsys.readouterr() - assert 'name' in out - assert ': Kennedy' in out - - -def test_entities_file(capsys): - snippets.entities_file() - out, _ = capsys.readouterr() - assert 'name' in out - assert ': Kennedy' in out - - -def test_syntax_text(capsys): - snippets.syntax_text() - out, _ = capsys.readouterr() - assert 'NOUN: President' in out - - -def test_syntax_file(capsys): - snippets.syntax_file() - out, _ = capsys.readouterr() - assert 'NOUN: President' in out - - -def test_sentiment_entities_text(capsys): - snippets.entity_sentiment_text() - out, _ = capsys.readouterr() - assert 'Content : White House' in out - - -def test_sentiment_entities_file(capsys): - snippets.entity_sentiment_file() - out, _ = capsys.readouterr() - assert 'Content : White House' in out - - -def test_classify_text(capsys): - snippets.classify_text() - out, _ = capsys.readouterr() - assert 'name' in out - assert '/Computers & Electronics' in out - - -def test_classify_file(capsys): - snippets.classify_file() - out, _ = capsys.readouterr() - assert 'name' in out - assert '/Computers & Electronics' in out