forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pytorch_test_common.py
143 lines (104 loc) · 4.21 KB
/
pytorch_test_common.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# Owner(s): ["module: onnx"]
import functools
import os
import sys
import unittest
import torch
from torch.autograd import function
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.insert(-1, pytorch_test_dir)
torch.set_default_tensor_type("torch.FloatTensor")
BATCH_SIZE = 2
RNN_BATCH_SIZE = 7
RNN_SEQUENCE_LENGTH = 11
RNN_INPUT_SIZE = 5
RNN_HIDDEN_SIZE = 3
def _skipper(condition, reason):
def decorator(f):
@functools.wraps(f)
def wrapper(*args, **kwargs):
if condition():
raise unittest.SkipTest(reason)
return f(*args, **kwargs)
return wrapper
return decorator
skipIfNoCuda = _skipper(lambda: not torch.cuda.is_available(), "CUDA is not available")
skipIfTravis = _skipper(lambda: os.getenv("TRAVIS"), "Skip In Travis")
skipIfNoBFloat16Cuda = _skipper(
lambda: not torch.cuda.is_bf16_supported(), "BFloat16 CUDA is not available"
)
# skips tests for all versions below min_opset_version.
# if exporting the op is only supported after a specific version,
# add this wrapper to prevent running the test for opset_versions
# smaller than the currently tested opset_version
def skipIfUnsupportedMinOpsetVersion(min_opset_version):
def skip_dec(func):
@functools.wraps(func)
def wrapper(self, *args, **kwargs):
if self.opset_version < min_opset_version:
raise unittest.SkipTest(
f"Unsupported opset_version: {self.opset_version} < {min_opset_version}"
)
return func(self, *args, **kwargs)
return wrapper
return skip_dec
# skips tests for all versions above max_opset_version.
def skipIfUnsupportedMaxOpsetVersion(max_opset_version):
def skip_dec(func):
@functools.wraps(func)
def wrapper(self, *args, **kwargs):
if self.opset_version > max_opset_version:
raise unittest.SkipTest(
f"Unsupported opset_version: {self.opset_version} > {max_opset_version}"
)
return func(self, *args, **kwargs)
return wrapper
return skip_dec
# skips tests for all opset versions.
def skipForAllOpsetVersions():
def skip_dec(func):
@functools.wraps(func)
def wrapper(self, *args, **kwargs):
if self.opset_version:
raise unittest.SkipTest(
"Skip verify test for unsupported opset_version"
)
return func(self, *args, **kwargs)
return wrapper
return skip_dec
def skipTraceTest(min_opset_version=float("inf")):
def skip_dec(func):
@functools.wraps(func)
def wrapper(self, *args, **kwargs):
self.is_trace_test_enabled = self.opset_version >= min_opset_version
if not self.is_trace_test_enabled and not self.is_script:
raise unittest.SkipTest("Skip verify test for torch trace")
return func(self, *args, **kwargs)
return wrapper
return skip_dec
def skipScriptTest(min_opset_version=float("inf")):
def skip_dec(func):
@functools.wraps(func)
def wrapper(self, *args, **kwargs):
self.is_script_test_enabled = self.opset_version >= min_opset_version
if not self.is_script_test_enabled and self.is_script:
raise unittest.SkipTest("Skip verify test for TorchScript")
return func(self, *args, **kwargs)
return wrapper
return skip_dec
# skips tests for opset_versions listed in unsupported_opset_versions.
# if the caffe2 test cannot be run for a specific version, add this wrapper
# (for example, an op was modified but the change is not supported in caffe2)
def skipIfUnsupportedOpsetVersion(unsupported_opset_versions):
def skip_dec(func):
@functools.wraps(func)
def wrapper(self, *args, **kwargs):
if self.opset_version in unsupported_opset_versions:
raise unittest.SkipTest(
"Skip verify test for unsupported opset_version"
)
return func(self, *args, **kwargs)
return wrapper
return skip_dec
def flatten(x):
return tuple(function._iter_filter(lambda o: isinstance(o, torch.Tensor))(x))