-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathposts2.html
301 lines (281 loc) · 22 KB
/
posts2.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
<!DOCTYPE html>
<html>
<head>
<title>datawerk</title>
<meta charset="utf-8" />
<link href="https://buhrmann.github.io/theme/css/bootstrap-custom.css" rel="stylesheet"/>
<link href="https://buhrmann.github.io/theme/css/pygments.css" rel="stylesheet"/>
<link href="https://buhrmann.github.io/theme/css/style.css" rel="stylesheet" />
<link href="//maxcdn.bootstrapcdn.com/font-awesome/4.2.0/css/font-awesome.min.css" rel="stylesheet">
<link rel="shortcut icon" type="image/png" href="https://buhrmann.github.io/theme/css/logo.png">
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1">
<script>
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,'script','//www.google-analytics.com/analytics.js','ga');
ga('create', 'UA-56071357-1', 'auto');
ga('send', 'pageview');
</script> </head>
<body>
<div class="wrap">
<div class="container-fluid">
<div class="header">
<div class="container">
<nav class="navbar navbar-default navbar-fixed-top" role="navigation">
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target=".navbar-collapse">
<span class="sr-only">Toggle navigation</span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a class="navbar-brand" href="https://buhrmann.github.io">
<!-- <span class="fa fa-pie-chart navbar-logo"></span> datawerk -->
<span class="navbar-logo"><img src="https://buhrmann.github.io/theme/css/logo.png" style=""></img></span>
</a>
</div>
<div class="navbar-collapse collapse">
<ul class="nav navbar-nav">
<!--<li><a href="https://buhrmann.github.io/archives.html">Archives</a></li>-->
<li><a href="https://buhrmann.github.io/posts.html">Blog</a></li>
<li><a href="https://buhrmann.github.io/pages/cv.html">Interactive CV</a></li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown">Data Reports<span class="caret"></span></a>
<ul class="dropdown-menu" role="menu">
<!--<li class="divider"></li>
<li class="dropdown-header">Data Science Reports</li>-->
<li >
<a href="https://buhrmann.github.io/p2p-loans.html">Interest rates on <span class="caps">P2P</span> loans</a>
</li>
<li >
<a href="https://buhrmann.github.io/activity-data.html">Categorisation of inertial activity data</a>
</li>
<li >
<a href="https://buhrmann.github.io/titanic-survival.html">Titanic survival prediction</a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown">Data Apps<span class="caret"></span></a>
<ul class="dropdown-menu" role="menu">
<!--<li class="divider"></li>
<li class="dropdown-header">Data Science Reports</li>-->
<li >
<a href="https://buhrmann.github.io/elegans.html">C. elegans connectome explorer</a>
</li>
<li >
<a href="https://buhrmann.github.io/dash+.html">Dash+ visualization of running data</a>
</li>
</ul>
</li>
</ul>
</div>
</nav>
</div>
</div><!-- header -->
</div><!-- container-fluid -->
<div class="container main-content">
<div class="row row-centered">
<div class="col-centered col-max col-min col-sm-12 col-md-10 col-lg-10 main-content">
<section id="content" class="content">
<article class="hentry">
<header>
<span class="entry-title-info">Jan 15 · <a href="https://buhrmann.github.io/category/data-apps.html">Data Apps</a></span>
<h2 class="entry-title entry-title-tight"><a href="https://buhrmann.github.io/elegans.html" rel="bookmark" title="Permalink to C. elegans connectome explorer">C. elegans connectome explorer</a></h2>
</header>
<div class="entry-content"> <p>I’ve build a prototype <a href="https://elegans.herokuapp.com">visual exploration tool</a> for the connectome of c. elegans. The data describing the worm’s neural network is preprocessed from publicly available information and stored as a graph database in neo4j. The d3.js visualization then fetches either the whole network or a subgraph and displays it using a force-directed layout (for now).</p>
<figure>
<a href="https://elegans.herokuapp.com"><img src="/images/elegans/elegans.png" alt="Elegans"/></a>
</figure> </div><!-- entry-content -->
</article>
<article class="hentry">
<header>
<span class="entry-title-info">Nov 13 · <a href="https://buhrmann.github.io/category/academia.html">Academia</a></span>
<h2 class="entry-title entry-title-tight"><a href="https://buhrmann.github.io/spinal-coordination.html" rel="bookmark" title="Permalink to Movement control without internal models">Movement control without internal models</a></h2>
</header>
<div class="entry-content"> <p>My latest paper has just been published by Frontiers in Computational Neuroscience and can be accessed free of charge <a href="http://journal.frontiersin.org/Journal/10.3389/fncom.2014.00144/abstract">here</a>. It concerns the question of whether we need internal models (simulations) in order to control our movements, or whether our body and the lower-level neural circuits innervating it provide some control “for free”.</p>
<p>From the abstract:</p>
<blockquote>
The dynamic interaction of limb segments during movements that involve multiple joints creates torques in one joint due to motion about another. Evidence shows that such interaction torques are taken into account during the planning or control of movement in humans. Two alternative hypotheses …</blockquote> </div><!-- entry-content -->
</article>
<article class="hentry">
<header>
<span class="entry-title-info">Nov 06 · <a href="https://buhrmann.github.io/category/reports.html">Reports</a></span>
<h2 class="entry-title entry-title-tight"><a href="https://buhrmann.github.io/activity-data.html" rel="bookmark" title="Permalink to Categorisation of inertial activity data">Categorisation of inertial activity data</a></h2>
</header>
<div class="entry-content"> <p>The ubiquity of mobile phones equipped with a wide range of sensors presents interesting opportunities for data mining applications. In this report we aim to find out whether data from accelerometers and gyroscopes can be used to identify physical activities performed by subjects wearing mobile phones on their wrist.</p>
<p><img src="/images/activitycat/muybridge.jpg" alt="Human activity" width="1000"/></p>
<h3>Methods</h3>
<p>The data used in this analysis is based on the “Human activity recognition using smartphones” data set available from the <span class="caps">UCL</span> Machine Learning Repository [1]. A preprocessed version was downloaded from the Data Analysis online course [2]. The set contains data derived from 3-axial linear acceleration and 3-axial angular velocity …</p> </div><!-- entry-content -->
</article>
<article class="hentry">
<header>
<span class="entry-title-info">Nov 06 · <a href="https://buhrmann.github.io/category/data-apps.html">Data Apps</a></span>
<h2 class="entry-title entry-title-tight"><a href="https://buhrmann.github.io/dash+.html" rel="bookmark" title="Permalink to Dash+ visualization of running data">Dash+ visualization of running data</a></h2>
</header>
<div class="entry-content"> <p><a href="http://dashplus.herokuapp.com/">Dash+</a> is a python web application I built with <a href="http://flask.pocoo.org/">Flask</a>, which imports Nike+ running data into a NoSQL database (MongoDB) and uses <a href="http://d3js.org/">D3.js</a> to visualize and analyze it. </p>
<p>The app is work in progress and primarily intended as a personal playground for exploring d3 visualization of my own running data. Having said that, if you want to fork your own version on <a href="https://github.com/synergenz/dash">github</a>, simply add your Nike access token in the corresponding file.</p>
<figure>
<a href="http://dashplus.herokuapp.com"><img src="/images/dash/screen1.png" alt="Dash+ screenshot 1" style="width: 400px"/></a>
</figure> </div><!-- entry-content -->
</article>
<article class="hentry">
<header>
<span class="entry-title-info">Oct 23 · <a href="https://buhrmann.github.io/category/reports.html">Reports</a></span>
<h2 class="entry-title entry-title-tight"><a href="https://buhrmann.github.io/titanic-survival.html" rel="bookmark" title="Permalink to Titanic survival prediction">Titanic survival prediction</a></h2>
</header>
<div class="entry-content"> <p>In this report I will provide an overview of my solution to <a href="http://www.kaggle.com">kaggle’s</a> <a href="https://www.kaggle.com/c/titanic-gettingStarted">“Titanic” competition</a>. The aim of this competition is to predict the survival of passengers aboard the titanic using information such as a passenger’s gender, age or socio-economic status. I will explain my data munging process, explore the available predictor variables, and compare a number of different classification algorithms in terms of their prediction performance. All analysis presented here was performed in R. The corresponding source code is available on <a href="https://github.com/synergenz/kaggle/tree/master/titanic">github</a>.</p>
<figure>
<img src="/images/titanic/titanic.jpg" alt="Titanic"/>
</figure>
<h3>Data munging</h3>
<p>The <a href="https://www.kaggle.com/c/titanic-gettingStarted/data">data set</a> provided by kaggle contains 1309 records of passengers aboard the …</p> </div><!-- entry-content -->
</article>
<article class="hentry">
<header>
<span class="entry-title-info">Jul 01 · <a href="https://buhrmann.github.io/category/academia.html">Academia</a></span>
<h2 class="entry-title entry-title-tight"><a href="https://buhrmann.github.io/piaget.html" rel="bookmark" title="Permalink to Learning to perceive through equilibration">Learning to perceive through equilibration</a></h2>
</header>
<div class="entry-content"> <p>Our new paper on sensorimotor contingencies is out. It tackles what seems like a paradox in the sensorimotor approach: if understanding is required for perception, how can we learn to perceive something new, something we do not yet understand? We propose a Piagetian solution to this problem, according to which we learn to perceive by re-shaping pre-existing sensorimotor structures (the earliest of which are already present at birth) in coupling with dynamical regularities of the world.</p>
<figure>
<a href="http://journal.frontiersin.org/Journal/10.3389/fnhum.2014.00551/full"><img src="http://www.frontiersin.org/files/Articles/92421/fnhum-08-00551-HTML/image_m/fnhum-08-00551-g001.jpg" style="width: 400px"/></a>
</figure>
<p>Get it here: <a href="http://journal.frontiersin.org/Journal/10.3389/fnhum.2014.00551/full">Frontiers in Cognition | Learning to perceive in the sensorimotor approach: Piaget’s theory of equilibration interpreted dynamically</a></p> </div><!-- entry-content -->
</article>
<article class="hentry">
<header>
<span class="entry-title-info">May 31 · <a href="https://buhrmann.github.io/category/academia.html">Academia</a></span>
<h2 class="entry-title entry-title-tight"><a href="https://buhrmann.github.io/dynamical-smcs.html" rel="bookmark" title="Permalink to A dynamical systems account of sensorimotor contingencies">A dynamical systems account of sensorimotor contingencies</a></h2>
</header>
<div class="entry-content"> <p>We have published a new paper on sensorimotor contingencies (SMCs). It provides operational definitions for four different notions of SMCs that have not previously been distinguished. The paper illustrates these using a minimal cognition model and hypothesises about their link to personal-level concepts fundamental to the sensorimotor approach, such as the mastery of sensorimotor skills.</p>
<figure>
<a href="http://journal.frontiersin.org/Journal/10.3389/fpsyg.2013.00285/full"><img src="http://www.frontiersin.org/files/Articles/49706/fpsyg-04-00285-HTML/image_m/fpsyg-04-00285-g004.jpg" style="width: 400px"/></a>
</figure>
<p><a href="http://journal.frontiersin.org/Journal/10.3389/fpsyg.2013.00285/full">Frontiers in Cognition | A Dynamical Systems Account of Sensorimotor Contingencies</a></p> </div><!-- entry-content -->
</article>
<article class="hentry">
<header>
<span class="entry-title-info">Oct 20 · <a href="https://buhrmann.github.io/category/academia.html">Academia</a></span>
<h2 class="entry-title entry-title-tight"><a href="https://buhrmann.github.io/science-daily.html" rel="bookmark" title="Permalink to Robots perceive the world like humans">Robots perceive the world like humans</a></h2>
</header>
<div class="entry-content"> <p>Science daily has covered our work on sensorimotor contingencies:</p>
<blockquote>Perceive first, act afterwards. The architecture of most of today’s robots is underpinned by this control strategy. The eSMCs project has set itself the aim of changing the paradigm and generating more dynamic computer models in which action is not a mere consequence of perception but an integral part of the perception process. It is about improving robot behavior by means of perception models closer to those of humans…</blockquote>
<p>Read the full article here: <a href="http://www.sciencedaily.com/releases/2012/10/121018100131.htm">Science Daily: Robots that perceive the world like humans</a></p> </div><!-- entry-content -->
</article>
<div class="pager">
<ul>
<li class="previous"><a href="https://buhrmann.github.io/posts.html">← Previous</a></li>
<li class="next disabled"><a>Next →</a></li>
</ul>
</div>
</section><!-- content -->
</div>
</div><!-- row-->
</div><!-- container -->
<!-- <div class="push"></div> -->
</div> <!-- wrap -->
<div class="container-fluid aw-footer">
<div class="row-centered">
<div class="col-sm-3 col-sm-offset-1">
<h4>Author</h4>
<ul class="list-unstyled my-list-style">
<li><a href="http://www.ias-research.net/people/thomas-buhrmann/">Academic Home</a></li>
<li><a href="http://github.com/synergenz">Github</a></li>
<li><a href="http://www.linkedin.com/in/thomasbuhrmann">LinkedIn</a></li>
<li><a href="https://secure.flickr.com/photos/syngnz/">Flickr</a></li>
</ul>
</div>
<div class="col-sm-3">
<h4>Categories</h4>
<ul class="list-unstyled my-list-style">
<li><a href="https://buhrmann.github.io/category/academia.html">Academia (4)</a></li>
<li><a href="https://buhrmann.github.io/category/data-apps.html">Data Apps (2)</a></li>
<li><a href="https://buhrmann.github.io/category/data-posts.html">Data Posts (9)</a></li>
<li><a href="https://buhrmann.github.io/category/reports.html">Reports (3)</a></li>
</ul>
</div>
<div class="col-sm-3">
<h4>Tags</h4>
<ul class="tagcloud">
<li class="tag-4"><a href="https://buhrmann.github.io/tag/shiny.html">shiny</a></li>
<li class="tag-4"><a href="https://buhrmann.github.io/tag/networks.html">networks</a></li>
<li class="tag-3"><a href="https://buhrmann.github.io/tag/sql.html">sql</a></li>
<li class="tag-3"><a href="https://buhrmann.github.io/tag/hadoop.html">hadoop</a></li>
<li class="tag-4"><a href="https://buhrmann.github.io/tag/mongodb.html">mongodb</a></li>
<li class="tag-1"><a href="https://buhrmann.github.io/tag/visualization.html">visualization</a></li>
<li class="tag-2"><a href="https://buhrmann.github.io/tag/smcs.html">smcs</a></li>
<li class="tag-3"><a href="https://buhrmann.github.io/tag/sklearn.html">sklearn</a></li>
<li class="tag-3"><a href="https://buhrmann.github.io/tag/tf-idf.html">tf-idf</a></li>
<li class="tag-1"><a href="https://buhrmann.github.io/tag/r.html">R</a></li>
<li class="tag-4"><a href="https://buhrmann.github.io/tag/sna.html">sna</a></li>
<li class="tag-2"><a href="https://buhrmann.github.io/tag/nosql.html">nosql</a></li>
<li class="tag-4"><a href="https://buhrmann.github.io/tag/svm.html">svm</a></li>
<li class="tag-4"><a href="https://buhrmann.github.io/tag/java.html">java</a></li>
<li class="tag-4"><a href="https://buhrmann.github.io/tag/hive.html">hive</a></li>
<li class="tag-4"><a href="https://buhrmann.github.io/tag/scraping.html">scraping</a></li>
<li class="tag-4"><a href="https://buhrmann.github.io/tag/lda.html">lda</a></li>
<li class="tag-2"><a href="https://buhrmann.github.io/tag/kaggle.html">kaggle</a></li>
<li class="tag-4"><a href="https://buhrmann.github.io/tag/exploratory.html">exploratory</a></li>
<li class="tag-4"><a href="https://buhrmann.github.io/tag/titanic.html">titanic</a></li>
<li class="tag-2"><a href="https://buhrmann.github.io/tag/classification.html">classification</a></li>
<li class="tag-1"><a href="https://buhrmann.github.io/tag/python.html">python</a></li>
<li class="tag-4"><a href="https://buhrmann.github.io/tag/random-forest.html">random forest</a></li>
<li class="tag-4"><a href="https://buhrmann.github.io/tag/text.html">text</a></li>
<li class="tag-4"><a href="https://buhrmann.github.io/tag/big-data.html">big data</a></li>
<li class="tag-2"><a href="https://buhrmann.github.io/tag/report.html">report</a></li>
<li class="tag-4"><a href="https://buhrmann.github.io/tag/regression.html">regression</a></li>
<li class="tag-2"><a href="https://buhrmann.github.io/tag/graph.html">graph</a></li>
<li class="tag-2"><a href="https://buhrmann.github.io/tag/d3.html">d3</a></li>
<li class="tag-3"><a href="https://buhrmann.github.io/tag/neo4j.html">neo4j</a></li>
<li class="tag-4"><a href="https://buhrmann.github.io/tag/flume.html">flume</a></li>
</ul>
</div>
</div>
</div>
<!-- JavaScript -->
<script src="https://code.jquery.com/jquery-2.1.1.min.js"></script>
<script src="//maxcdn.bootstrapcdn.com/bootstrap/3.2.0/js/bootstrap.min.js"></script>
<script type="text/javascript">
jQuery(document).ready(function($)
{
$("div.collapseheader").click(function () {
$header = $(this).children("span").first();
$codearea = $(this).children(".input_area");
$codearea.slideToggle(500, function () {
$header.text(function () {
return $codearea.is(":visible") ? "Collapse Code" : "Expand Code";
});
});
});
// $(window).resize(function(){
// var footerHeight = $('.aw-footer').outerHeight();
// var stickFooterPush = $('.push').height(footerHeight);
// $('.wrap').css({'marginBottom':'-' + footerHeight + 'px'});
// });
// $(window).resize();
// $(window).bind("load resize", function() {
// var footerHeight = 0,
// footerTop = 0,
// $footer = $(".aw-footer");
// positionFooter();
// function positionFooter() {
// footerHeight = $footer.height();
// footerTop = ($(window).scrollTop()+$(window).height()-footerHeight)+"px";
// console.log(footerHeight, footerTop);
// console.log($(document.body).height()+footerHeight, $(window).height());
// if ( ($(document.body).height()+footerHeight) < $(window).height()) {
// $footer.css({ position: "absolute" }).css({ top: footerTop });
// console.log("Positioning absolute");
// }
// else {
// $footer.css({ position: "static" });
// console.log("Positioning static");
// }
// }
// $(window).scroll(positionFooter).resize(positionFooter);
// });
});
</script>
</body>
</html>