-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest_uel.f90
160 lines (121 loc) · 3.72 KB
/
test_uel.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
program TestNewton
! this program compares the derivative in the constitutive update
! with finite difference estimates
implicit none
integer, parameter :: nint=4, nlsdv=1, ngsdv=6
real(8) Eyoung, anu, Gc, len
integer, parameter :: ndofel=12, nrhs=1, nsvars=nint*nlsdv, nprops=4, mcrd=2, nnode=4, &
jtype=1, kstep=1, kinc=1, jelem=1, ndload=1, npredef=1, mlvarx=1, mdload=1, &
njprop=3, nparams=1
real(8) :: rhs(mlvarx,ndofel), amatrx(ndofel,ndofel), svars(nsvars), energy(8), &
props(nprops), coords(mcrd,nnode), UAll(ndofel), DuAll(mlvarx,ndofel), Vel(ndofel), &
Accn(ndofel), time(2), dtime, params(nparams), adlmag(mdload,1), &
predef(2,npredef,nnode), ddlmag(mdload,1), pnewdt, period
integer :: jdltyp(mdload,1), lflags(5), jprops(njprop)
real(8) :: rp(ndofel), rm(ndofel), Kh(ndofel,ndofel), Kexact(ndofel,ndofel), du, &
max_error, error
integer i,j,imax,jmax
Eyoung = 218d6
anu = 0.3d0
Gc = 20d3
len = 4d-2
! set up material properties
props(1) = Eyoung
props(2) = anu
props(3) = Gc
props(4) = len
jprops(1) = nlsdv
jprops(2) = ngsdv
jprops(3) = 1
! set coordinates for element to be unit square
coords(1,1) = 0.0d0
coords(2,1) = 0.0d0
coords(1,2) = 1.0d0
coords(2,2) = 0.0d0
coords(1,3) = 1.0d0
coords(2,3) = 1.0d0
coords(1,4) = 0.0d0
coords(2,4) = 1.0d0
! initialize finite element arrays
rhs = 0
amatrx = 0
svars = 0
UAll = 0
DuAll = 0
Vel = 0
Accn = 0
! time not used in this material
time(1) = 1.0d0
time(2) = 1.0d0
dtime = 1.0d0
! Abaqus solution parameter flags
lflags(1) = 1
lflags(2) = 0
lflags(3) = 1
lflags(4) = 0
lflags(5) = 0
!
! test analytical derivative of root equation
!
!Uall(4) = 5d-3
!Uall(7) = 5d-3
!Uall(8) = -anu/(1.0d0-anu)*Uall(7)
!Uall(11) = -anu/(1.0d0-anu)*Uall(7)
!Uall(3) = 9.829d-2
!Uall(6) = 9.829d-2
!Uall(9) = 9.829d-2
!Uall(12) = 9.829d-2
Kexact=0
call UEL(rhs,Kexact,svars,energy,ndofel,nrhs,nsvars, &
props,nprops,coords,mcrd,nnode,Uall,Duall, &
Vel,Accn,jtype,time,dtime,kstep,kinc,jelem, &
params,ndload,jdltyp,adlmag,predef,npredef, &
lflags,mlvarx,ddlmag,mdload,pnewdt,jprops,njprop, &
period)
rp=0
rm=0
du = 1.d-8
do i=1,ndofel
Uall(i) = Uall(i) + du
call UEL(rp,amatrx,svars,energy,ndofel,nrhs,nsvars, &
props,nprops,coords,mcrd,nnode,Uall,Duall, &
Vel,Accn,jtype,time,dtime,kstep,kinc,jelem, &
params,ndload,jdltyp,adlmag,predef,npredef, &
lflags,mlvarx,ddlmag,mdload,pnewdt,jprops,njprop, &
period)
Uall(i) = Uall(i) - 2.d0*du
call UEL(rm,amatrx,svars,energy,ndofel,nrhs,nsvars, &
props,nprops,coords,mcrd,nnode,Uall,Duall, &
Vel,Accn,jtype,time,dtime,kstep,kinc,jelem, &
params,ndload,jdltyp,adlmag,predef,npredef, &
lflags,mlvarx,ddlmag,mdload,pnewdt,jprops,njprop, &
period)
Uall(i) = Uall(i) + du
do j=1,ndofel
Kh(i,j)=-(rp(j)-rm(j))/(2.0d0*du)
end do
end do
! find entry with worst error
max_error=0
imax = 0
jmax = 0
do i=1,ndofel
do j=1,ndofel
error = DABS(Kexact(i,j)-Kh(i,j))
if (error .gt. max_error) then
max_error = error
imax = i
jmax = j
end if
end do
end do
write(*,*) 'Max error: ',max_error
if (max_error .gt. 0.0d0) then
write(*,*) 'Entry (', imax, ',', jmax, ')'
write(*,*) 'Kh(', imax, ',', jmax, ') = ', Kh(imax,jmax)
write(*,*) 'Kexact(', imax, ',', jmax, ') = ', Kexact(imax,jmax)
end if
end program TestNewton
subroutine Xit
write(*,*) 'subroutine Xit() called'
end subroutine Xit