You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Loading model /root/.cache/huggingface/hub/models--lllyasviel--control_v11f1e_sd15_tile/snapshots/3f877705c37010b7221c3d10743307d6b5b6efac/diffusion_pytorch_model.bin onto cuda backend...
0%| | 0/40 [00:00<?, ?it/s]
Traceback (most recent call last):
File "/usr/local/bin/imagine", line 7, in
imaginairy.cli.imagine.imagine_cmd()
File "/usr/local/lib/python3.10/site-packages/click/core.py", line 1130, in call
return self.main(*args, **kwargs)
File "/usr/local/lib/python3.10/site-packages/click/core.py", line 1055, in main
rv = self.invoke(ctx)
File "/usr/local/lib/python3.10/site-packages/click/core.py", line 1404, in invoke
return ctx.invoke(self.callback, **ctx.params)
File "/usr/local/lib/python3.10/site-packages/click/core.py", line 760, in invoke
return __callback(*args, **kwargs)
File "/usr/local/lib/python3.10/site-packages/click/decorators.py", line 26, in new_func
return f(get_current_context(), *args, **kwargs)
File "/usr/local/lib/python3.10/contextlib.py", line 79, in inner
return func(*args, **kwds)
File "/usr/local/lib/python3.10/site-packages/imaginairy/cli/imagine.py", line 187, in imagine_cmd
return _imagine_cmd(
File "/usr/local/lib/python3.10/site-packages/imaginairy/cli/shared.py", line 220, in _imagine_cmd
filenames = imagine_image_files(
File "/usr/local/lib/python3.10/site-packages/imaginairy/api/generate.py", line 90, in imagine_image_files
for result in imagine(
File "/usr/local/lib/python3.10/site-packages/imaginairy/api/generate.py", line 237, in imagine
result = generate_single_image(
File "/usr/local/lib/python3.10/site-packages/imaginairy/api/generate_refiners.py", line 336, in generate_single_image
x = sd(
File "/usr/local/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/usr/local/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
return forward_call(*args, **kwargs)
File "/usr/local/lib/python3.10/site-packages/imaginairy/vendored/refiners/foundationals/latent_diffusion/model.py", line 94, in forward
unconditional_prediction, conditional_prediction = self.unet(latents).chunk(2)
File "/usr/local/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/usr/local/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
return forward_call(*args, **kwargs)
File "/usr/local/lib/python3.10/site-packages/imaginairy/vendored/refiners/fluxion/layers/chain.py", line 279, in forward
result = self._call_layer(layer, name, *intermediate_args)
File "/usr/local/lib/python3.10/site-packages/imaginairy/vendored/refiners/fluxion/layers/chain.py", line 273, in _call_layer
raise ChainError(message) from None
imaginairy.vendored.refiners.fluxion.layers.chain.ChainError:
RuntimeError:
The size of tensor a (145) must match the size of tensor b (150) at non-singleton dimension 3
Loading model /root/.cache/huggingface/hub/models--lllyasviel--control_v11f1e_sd15_tile/snapshots/3f877705c37010b7221c3d10743307d6b5b6efac/diffusion_pytorch_model.bin onto cuda backend...
Traceback (most recent call last):
File "/usr/local/bin/imagine", line 7, in
imaginairy.cli.imagine.imagine_cmd()
File "/usr/local/lib/python3.10/site-packages/click/core.py", line 1130, in call
return self.main(*args, **kwargs)
File "/usr/local/lib/python3.10/site-packages/click/core.py", line 1055, in main
rv = self.invoke(ctx)
File "/usr/local/lib/python3.10/site-packages/click/core.py", line 1404, in invoke
return ctx.invoke(self.callback, **ctx.params)
File "/usr/local/lib/python3.10/site-packages/click/core.py", line 760, in invoke
return __callback(*args, **kwargs)
File "/usr/local/lib/python3.10/site-packages/click/decorators.py", line 26, in new_func
return f(get_current_context(), *args, **kwargs)
File "/usr/local/lib/python3.10/contextlib.py", line 79, in inner
return func(*args, **kwds)
File "/usr/local/lib/python3.10/site-packages/imaginairy/cli/imagine.py", line 187, in imagine_cmd
return _imagine_cmd(
File "/usr/local/lib/python3.10/site-packages/imaginairy/cli/shared.py", line 220, in _imagine_cmd
filenames = imagine_image_files(
File "/usr/local/lib/python3.10/site-packages/imaginairy/api/generate.py", line 90, in imagine_image_files
for result in imagine(
File "/usr/local/lib/python3.10/site-packages/imaginairy/api/generate.py", line 237, in imagine
result = generate_single_image(
File "/usr/local/lib/python3.10/site-packages/imaginairy/api/generate_refiners.py", line 336, in generate_single_image
x = sd(
File "/usr/local/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/usr/local/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
return forward_call(*args, **kwargs)
File "/usr/local/lib/python3.10/site-packages/imaginairy/vendored/refiners/foundationals/latent_diffusion/model.py", line 94, in forward
unconditional_prediction, conditional_prediction = self.unet(latents).chunk(2)
File "/usr/local/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/usr/local/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
return forward_call(*args, **kwargs)
File "/usr/local/lib/python3.10/site-packages/imaginairy/vendored/refiners/fluxion/layers/chain.py", line 279, in forward
result = self._call_layer(layer, name, *intermediate_args)
File "/usr/local/lib/python3.10/site-packages/imaginairy/vendored/refiners/fluxion/layers/chain.py", line 273, in _call_layer
raise ChainError(message) from None
imaginairy.vendored.refiners.fluxion.layers.chain.ChainError:
RuntimeError:
The size of tensor a (145) must match the size of tensor b (150) at non-singleton dimension 3
(CHAIN)
├── Conv2d(in_channels=4, out_channels=320, kernel_size=(3, 3), padding=(1, 1))
├── >>> (RES) Residual() | SD1ControlnetAdapter.SD1ControlnetAdapter.SD1UNet.Controlnet_1.DownBlocks.Chain_1.Residual
│ ├── UseContext(context=controlnet, key=condition_details)
│ └── (CHAIN) ConditionEncoder()
│ ├── (CHAIN) #1 ...
│ ├── (CHAIN) #2 ...
│ ├── (CHAIN) #3 ...
│ ├── (CHAIN) #4 ...
│ └── Conv2d(in_channels=256, out_channels=320, kernel_size=(3, 3), padding=(1, 1))
└── (PASS)
0: Tensor(shape=(2, 320, 99, 150), dtype=float16, device=cuda:0, min=-4.19, max=3.85, mean=0.01, std=0.40, norm=1238.00, grad=False)
(CHAIN) DownBlocks(in_channels=4)
├── >>> (CHAIN) | SD1ControlnetAdapter.SD1ControlnetAdapter.SD1UNet.Controlnet_1.DownBlocks.Chain_1 #1
│ ├── Conv2d(in_channels=4, out_channels=320, kernel_size=(3, 3), padding=(1, 1))
│ ├── (RES) Residual()
│ │ ├── UseContext(context=controlnet, key=condition_details)
│ │ └── (CHAIN) ConditionEncoder() ...
│ └── (PASS)
│ ├── Conv2d(in_channels=320, out_channels=320, kernel_size=(1, 1))
│ └── Lambda(_store_residual(x: torch.Tensor))
├── (CHAIN) (x2) #2
│ ├── (SUM) ResidualBlock(in_channels=320, out_channels=320)
0: Tensor(shape=(2, 4, 99, 150), dtype=float16, device=cuda:0, min=-4.61, max=4.02, mean=-0.18, std=1.12, norm=389.50, grad=False)
(PASS) Controlnet(name=details)
├── (PASS) TimestepEncoder()
│ ├── UseContext(context=diffusion, key=timestep)
│ ├── (CHAIN) RangeEncoder(sinuosidal_embedding_dim=320, embedding_dim=1280)
│ │ ├── Lambda(compute_sinuosoidal_embedding(x: jaxtyping.Int[Tensor, '*batch 1']) -> jaxtyping.Float[Tensor, '*batch 1 embedding_dim'])
│ │ ├── Converter(set_device=False)
│ │ ├── Linear(in_features=320, out_features=1280) #1
│ │ ├── SiLU()
│ │ └── Linear(in_features=1280, out_features=1280) #2
│ └── SetContext(context=range_adapter, key=timestep_embedding_details)
├── Slicing(dim=1, end=4)
0: Tensor(shape=(2, 4, 99, 150), dtype=float16, device=cuda:0, min=-4.61, max=4.02, mean=-0.18, std=1.12, norm=389.50, grad=False)
(CHAIN) SD1UNet(in_channels=4)
├── >>> (PASS) Controlnet(name=details) | SD1ControlnetAdapter.SD1ControlnetAdapter.SD1UNet.Controlnet_1 #1
│ ├── (PASS) TimestepEncoder()
│ │ ├── UseContext(context=diffusion, key=timestep)
│ │ ├── (CHAIN) RangeEncoder(sinuosidal_embedding_dim=320, embedding_dim=1280) ...
│ │ └── SetContext(context=range_adapter, key=timestep_embedding_details)
│ ├── Slicing(dim=1, end=4)
│ ├── (CHAIN) DownBlocks(in_channels=4)
│ │ ├── (CHAIN) #1 ...
│ │ ├── (CHAIN) (x2) #2 ...
│ │ ├── (CHAIN) #3 ...
0: Tensor(shape=(2, 4, 99, 150), dtype=float16, device=cuda:0, min=-4.61, max=4.02, mean=-0.18, std=1.12, norm=389.50, grad=False)
The text was updated successfully, but these errors were encountered: