-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
289 lines (227 loc) · 11.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torchvision
import math
from datasets.dataloader import create_semi_labeled_train_dataloader, create_semi_unlabel_train_dataloader, create_semi_val_or_test_dataloader
from optims.optimizers import init_optim
from models.CSRNet import CSRNet_SEMI, CSRNet_SEMI_Multistage, CSRNet_SEMI_L2R, CSRNet_SEMI_TwoStage
from losses.MarginRankLoss import MixedLoss
from utils.pytorch_utils import AverageMeter
import numpy as np
import time
import os
import sys
import errno
import argparse
from tqdm import tqdm
from tensorboardX import SummaryWriter
parser = argparse.ArgumentParser(description='Train crowdcounting model')
parser.add_argument('--dataset', type=str, default='shanghaitech')
parser.add_argument('--unlabeldataset', type=str, default='CAPTURE')
parser.add_argument('--label-file-list', type=str)
parser.add_argument('--unlabel-file-list', type=str)
parser.add_argument('--val-file-list', type=str)
parser.add_argument('--resume', type=str, default='')
parser.add_argument('--use-avai-gpus', action='store_true')
parser.add_argument('--gpu-devices', type=str, default='0')
parser.add_argument('--model', type=str, default='ResNet')
parser.add_argument('--max-epoch', type=int, default=10)
parser.add_argument('--optim', type=str, default='sgd')
parser.add_argument('--lr', type=float, default=1e-05)
parser.add_argument('--weight-decay', default=1e-04, type=float)
parser.add_argument('--train-batch', type=int)
parser.add_argument('--train-unlabel-batch', type=int)
parser.add_argument('--val-batch', type=int, default=1)
parser.add_argument('--label-crop-size', type=int, default=256)
parser.add_argument('--unlabel-crop-size', type=int, default=256)
parser.add_argument('--seed', type=int, default=1)
parser.add_argument('--loss', type=str, default='mixedloss')
parser.add_argument('--semi', action='store_true')
parser.add_argument('--crop-ratio', type=float, default=0.75)
parser.add_argument('--lamda', type=float, default=1.0)
parser.add_argument('--label-percent', type=str, default='100')
parser.add_argument('--checkpoints', type=str, default='./checkpoints')
parser.add_argument('--summary-writer', type=str, default='./runs')
parser.add_argument('--save-txt', type=str, default='train_log.txt')
args = parser.parse_args()
torch.autograd.set_detect_anomaly(True)
def mkdir_if_missing(directory):
if not os.path.exists(directory):
try:
os.makedirs(directory)
except OSError as e:
if e.errno != errno.EEXIST:
raise
def main():
SAVE_CHECKPOINT_SUBROOT = '{}_{}_{}_{}_{}_{}_{}_{}_{}_{}_{}_{}'.format(
args.dataset, args.unlabeldataset, args.model, args.label_percent, args.optim, args.lr,
args.weight_decay, args.train_batch, args.train_unlabel_batch,
args.label_crop_size, args.unlabel_crop_size, args.lamda
)
args.checkpoints = os.path.join(args.checkpoints, SAVE_CHECKPOINT_SUBROOT)
args.summary_writer = os.path.join(args.summary_writer, SAVE_CHECKPOINT_SUBROOT)
mkdir_if_missing(args.checkpoints)
mkdir_if_missing(args.summary_writer)
SEMI = args.semi = True # set True manually for debug
print("learning rate: ", args.lr)
print("dataset: ", args.dataset)
print("model: ", args.model)
print("labelfilelist: ", args.label_file_list)
print("unlabelfilelist: ", args.unlabel_file_list)
print("valfilelist: ", args.val_file_list)
print("train batch: ", args.train_batch)
print("train unlabel batch: ", args.train_unlabel_batch)
print("label crop size: ", args.label_crop_size)
print("unlabel crop size: ", args.unlabel_crop_size)
print("val batch: ", args.val_batch)
print("optimizer: ", args.optim)
print("weight decay: ", args.weight_decay)
print("IsSemi: ", SEMI)
print("Loss function: ", args.loss)
print("Lambda: ", args.lamda)
print("Label_Percent: ", args.label_percent)
print("checkpoints: ", args.checkpoints)
print("runs: ", args.summary_writer)
torch.manual_seed(args.seed)
if not args.use_avai_gpus: os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices
use_gpu = torch.cuda.is_available()
if use_gpu:
print("Currently using GPU {}".format(args.gpu_devices))
cudnn.benchmark = True
torch.cuda.manual_seed_all(args.seed)
else:
print("Currently using CPU (GPU is highly recommended)")
BATCH_NORMALIZATION = False
if args.train_batch > 1:
BATCH_NORMALIZATION = True
print("Batch Normalization: ", BATCH_NORMALIZATION)
if args.model == 'CSRNet':
model = CSRNet_SEMI()
elif args.model == 'CSRNet_Multi':
model = CSRNet_SEMI_Multistage()
elif args.model == 'CSRNet_L2R':
model = CSRNet_SEMI_L2R()
elif args.model == 'CSRNet_TwoStage':
model = CSRNet_SEMI_TwoStage()
print("Currently using {} model".format(args.model))
print("The parameters of model are: %.2fM" % (sum(p.numel() for p in model.parameters()) / 1e6))
if use_gpu:
model = nn.DataParallel(model).cuda()
start_epoch = 0
if args.resume == '':
if os.path.isfile(args.resume):
pkl = torch.load(args.resume)
state_dict = pkl['state_dict']
print("Currently epoch {}".format(pkl['epoch']))
model.load_state_dict(state_dict)
start_epoch = pkl['epoch']
print("Currently epoch {}".format(start_epoch))
if args.loss == 'mixedloss':
total_criterion = MixedLoss(lamda=args.lamda)
optimizer = init_optim(args.optim, model.parameters(), args.lr, args.weight_decay)
label_train_loader = create_semi_labeled_train_dataloader(labeled_file_list=args.label_file_list,
use_flip=True,
batch_size=args.train_batch,
cropsize=args.label_crop_size)
unlabel_train_loader = create_semi_unlabel_train_dataloader(unlabeled_file_list=args.unlabel_file_list,
use_flip=True,
batch_size=args.train_unlabel_batch,
cropsize=args.unlabel_crop_size)
val_loader = create_semi_val_or_test_dataloader(file_list=args.val_file_list)
min_mae = sys.maxsize
min_mae_epoch = -1
writer = SummaryWriter(args.summary_writer)
COUNT = 0
with open(os.path.join(args.checkpoints, args.save_txt), 'a') as f:
for epoch in range(start_epoch, start_epoch + args.max_epoch):
model.train()
epoch_loss = AverageMeter()
epoch_label_loss = AverageMeter()
epoch_unlabel_loss = AverageMeter()
epoch_mae = AverageMeter()
epoch_mse = AverageMeter()
for i, label_data in enumerate(tqdm(label_train_loader)):
epoch_start = time.time()
label_image = label_data['image'].cuda()
gt_densitymap = label_data['densitymap'].cuda()
N = label_image.shape[0]
for j, unlabel_data in enumerate(unlabel_train_loader):
unlabel_image = unlabel_data['image'].cuda()
break
label_et_densitymap, unlabel_et_densitymap = model(label_image, unlabel_image)
losses = total_criterion(label_et_densitymap, gt_densitymap, unlabel_et_densitymap)
epoch_loss.update(losses['total'].item(), N)
epoch_label_loss.update(losses['label'].item(), N)
if isinstance(losses['unlabel'], float):
epoch_unlabel_loss.update(losses['unlabel'], N)
else:
epoch_unlabel_loss.update(losses['unlabel'].item(), N)
loss = losses['total']
optimizer.zero_grad()
loss.backward(retain_graph=True)
optimizer.step()
pred_count = torch.sum(label_et_densitymap.view(N, -1), dim=1).detach().cpu().numpy()
gt_count = torch.sum(gt_densitymap.view(N, -1), dim=1).detach().cpu().numpy()
pred_err = pred_count - gt_count
epoch_mse.update(np.mean(pred_err * pred_err), N)
epoch_mae.update(np.mean(abs(pred_err)), N)
epoch_end = time.time()
print('Epoch {} Train, Loss: {:.6f}, LabelLoss: {:.6f}, UnlabelLoss: {:.6f}, '
'MAE: {:.2f}, RMSE:{:.2f}, Cost: {:.1f} sec'
.format(epoch, epoch_loss.get_avg(), epoch_label_loss.get_avg(),
epoch_unlabel_loss.get_avg(), epoch_mae.get_avg(),
np.sqrt(epoch_mse.get_avg()), epoch_end-epoch_start))
f.write('Epoch {} Train, Loss: {:.6f}, LabelLoss: {:.6f}, UnlabelLoss: {:.6f}, '
'MAE: {:.2f}, RMSE:{:.2f}, Cost: {:.1f} sec'
.format(epoch, epoch_loss.get_avg(), epoch_label_loss.get_avg(),
epoch_unlabel_loss.get_avg(), epoch_mae.get_avg(),
np.sqrt(epoch_mse.get_avg()), epoch_end-epoch_start) + "\n")
writer.add_scalar('Train_Total_Loss', epoch_loss.get_avg(), epoch)
writer.add_scalar('Train_Label_Loss', epoch_label_loss.get_avg(), epoch)
writer.add_scalar('Train_Unlabel_Loss', epoch_unlabel_loss.get_avg(), epoch)
writer.add_scalar('Train_MAE', epoch_mae.get_avg(), epoch)
writer.add_scalar('Train_RMSE', np.sqrt(epoch_mse.get_avg()), epoch)
writer.add_scalar('Train_Time', epoch_end-epoch_start, epoch)
model.eval()
epoch_mae = 0.0
epoch_rmse = 0.0
with torch.no_grad():
for i, data in enumerate(tqdm(val_loader)):
epoch_start = time.time()
image = data['image'].cuda()
gt_densitymap = data['densitymap'].cuda()
et_densitymap = model(image).detach()
mae = abs(et_densitymap.data.sum() - gt_densitymap.sum())
rmse = mae * mae
epoch_mae += mae.item()
epoch_rmse += rmse.item()
epoch_end = time.time()
epoch_mae /= len(val_loader.dataset)
epoch_rmse = math.sqrt(epoch_rmse / len(val_loader.dataset))
print('Epoch {} Val, MAE: {:.2f} RMSE: {:.2f}, Cost {:.1f} sec'
.format(epoch, epoch_mae, epoch_rmse, epoch_end-epoch_start))
f.write('Epoch {} Val, MAE: {:.2f} RMSE: {:.2f}, Cost {:.1f} sec'
.format(epoch, epoch_mae, epoch_rmse, epoch_end-epoch_start) + "\n")
if epoch_mae <= min_mae:
min_mae, min_rmse, min_mae_epoch = epoch_mae, epoch_rmse, epoch
torch.save({
'state_dict': model.state_dict(),
'epoch': epoch,
'best_mae': min_mae,
'best_rmse': min_rmse
}, os.path.join(args.checkpoints, "bestmodel_{}.pth".format(COUNT)))
COUNT += 1
writer.add_scalar('Val_MAE', epoch_mae, epoch)
writer.add_scalar('Val_RMSE', epoch_rmse, epoch)
writer.add_scalar('Val_Time', epoch_end-epoch_start, epoch)
writer.add_scalar('Val_BEST_MAE', min_mae, epoch)
print('Epoch {} Val, BEST_MAE: {:.2f} BEST_RMSE: {:.2f}'
.format(epoch, min_mae, min_rmse))
f.write('Epoch {} Val, MAE: {:.2f} RMSE: {:.2f}'
.format(epoch, min_mae, min_rmse) + "\n")
f.close()
return
if __name__ == '__main__':
main()