-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathapp.py
1348 lines (1156 loc) · 46.4 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from openai import OpenAI
from pydantic import BaseModel
from typing import List, Optional
import gradio as gr
import os
import logging
from logging.handlers import RotatingFileHandler
import sys
from functools import lru_cache
from tenacity import retry, stop_after_attempt, wait_exponential, retry_if_exception_type
import hashlib
import genanki
import random
import json
import tempfile
from pathlib import Path
import pandas as pd
class Step(BaseModel):
explanation: str
output: str
class Subtopics(BaseModel):
steps: List[Step]
result: List[str]
class Topics(BaseModel):
result: List[Subtopics]
class CardFront(BaseModel):
question: Optional[str] = None
class CardBack(BaseModel):
answer: Optional[str] = None
explanation: str
example: str
class Card(BaseModel):
front: CardFront
back: CardBack
metadata: Optional[dict] = None
class CardList(BaseModel):
topic: str
cards: List[Card]
class ConceptBreakdown(BaseModel):
main_concept: str
prerequisites: List[str]
learning_outcomes: List[str]
common_misconceptions: List[str]
difficulty_level: str # "beginner", "intermediate", "advanced"
class CardGeneration(BaseModel):
concept: str
thought_process: str
verification_steps: List[str]
card: Card
class LearningSequence(BaseModel):
topic: str
concepts: List[ConceptBreakdown]
cards: List[CardGeneration]
suggested_study_order: List[str]
review_recommendations: List[str]
def setup_logging():
"""Configure logging to both file and console"""
logger = logging.getLogger('ankigen')
logger.setLevel(logging.DEBUG)
# Create formatters
detailed_formatter = logging.Formatter(
'%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
simple_formatter = logging.Formatter(
'%(levelname)s: %(message)s'
)
# File handler (detailed logging)
file_handler = RotatingFileHandler(
'ankigen.log',
maxBytes=1024*1024, # 1MB
backupCount=5
)
file_handler.setLevel(logging.DEBUG)
file_handler.setFormatter(detailed_formatter)
# Console handler (info and above)
console_handler = logging.StreamHandler(sys.stdout)
console_handler.setLevel(logging.INFO)
console_handler.setFormatter(simple_formatter)
# Add handlers to logger
logger.addHandler(file_handler)
logger.addHandler(console_handler)
return logger
# Initialize logger
logger = setup_logging()
# Replace the caching implementation with a proper cache dictionary
_response_cache = {} # Global cache dictionary
@lru_cache(maxsize=100)
def get_cached_response(cache_key: str):
"""Get response from cache"""
return _response_cache.get(cache_key)
def set_cached_response(cache_key: str, response):
"""Set response in cache"""
_response_cache[cache_key] = response
def create_cache_key(prompt: str, model: str) -> str:
"""Create a unique cache key for the API request"""
return hashlib.md5(f"{model}:{prompt}".encode()).hexdigest()
# Add retry decorator for API calls
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=10),
retry=retry_if_exception_type(Exception),
before_sleep=lambda retry_state: logger.warning(
f"Retrying API call (attempt {retry_state.attempt_number})"
)
)
def structured_output_completion(
client, model, response_format, system_prompt, user_prompt
):
"""Make API call with retry logic and caching"""
cache_key = create_cache_key(f"{system_prompt}:{user_prompt}", model)
cached_response = get_cached_response(cache_key)
if cached_response is not None:
logger.info("Using cached response")
return cached_response
try:
logger.debug(f"Making API call with model {model}")
# Add JSON instruction to system prompt
system_prompt = f"{system_prompt}\nProvide your response as a JSON object matching the specified schema."
completion = client.chat.completions.create(
model=model,
messages=[
{"role": "system", "content": system_prompt.strip()},
{"role": "user", "content": user_prompt.strip()},
],
response_format={"type": "json_object"},
temperature=0.7
)
if not hasattr(completion, "choices") or not completion.choices:
logger.warning("No choices returned in the completion.")
return None
first_choice = completion.choices[0]
if not hasattr(first_choice, "message"):
logger.warning("No message found in the first choice.")
return None
# Parse the JSON response
result = json.loads(first_choice.message.content)
# Cache the successful response
set_cached_response(cache_key, result)
return result
except Exception as e:
logger.error(f"API call failed: {str(e)}", exc_info=True)
raise
def generate_cards_batch(
client,
model,
topic,
num_cards,
system_prompt,
batch_size=3
):
"""Generate a batch of cards for a topic"""
cards_prompt = f"""
Generate {num_cards} flashcards for the topic: {topic}
Return your response as a JSON object with the following structure:
{{
"cards": [
{{
"front": {{
"question": "question text"
}},
"back": {{
"answer": "concise answer",
"explanation": "detailed explanation",
"example": "practical example"
}},
"metadata": {{
"prerequisites": ["list", "of", "prerequisites"],
"learning_outcomes": ["list", "of", "outcomes"],
"misconceptions": ["list", "of", "misconceptions"],
"difficulty": "beginner/intermediate/advanced"
}}
}}
]
}}
"""
try:
logger.info(f"Generated learning sequence for {topic}")
response = structured_output_completion(
client,
model,
{"type": "json_object"},
system_prompt,
cards_prompt
)
if not response or "cards" not in response:
logger.error("Invalid cards response format")
raise ValueError("Failed to generate cards. Please try again.")
# Convert the JSON response into Card objects
cards = []
for card_data in response["cards"]:
card = Card(
front=CardFront(**card_data["front"]),
back=CardBack(**card_data["back"]),
metadata=card_data.get("metadata", {})
)
cards.append(card)
return cards
except Exception as e:
logger.error(f"Failed to generate cards batch: {str(e)}")
raise
# Add near the top with other constants
AVAILABLE_MODELS = [
{
"value": "gpt-4o-mini", # Default model
"label": "gpt-4o Mini (Fastest)",
"description": "Balanced speed and quality"
},
{
"value": "gpt-4o",
"label": "gpt-4o (Better Quality)",
"description": "Higher quality, slower generation"
},
{
"value": "o1",
"label": "o1 (Best Quality)",
"description": "Highest quality, longest generation time"
}
]
GENERATION_MODES = [
{
"value": "subject",
"label": "Single Subject",
"description": "Generate cards for a specific topic"
},
{
"value": "path",
"label": "Learning Path",
"description": "Break down a job description or learning goal into subjects"
}
]
def generate_cards(
api_key_input,
subject,
model_name="gpt-4o-mini",
topic_number=1,
cards_per_topic=2,
preference_prompt="assume I'm a beginner",
):
logger.info(f"Starting card generation for subject: {subject}")
logger.debug(f"Parameters: topics={topic_number}, cards_per_topic={cards_per_topic}")
# Input validation
if not api_key_input:
logger.warning("No API key provided")
raise gr.Error("OpenAI API key is required")
if not api_key_input.startswith("sk-"):
logger.warning("Invalid API key format")
raise gr.Error("Invalid API key format. OpenAI keys should start with 'sk-'")
if not subject.strip():
logger.warning("No subject provided")
raise gr.Error("Subject is required")
gr.Info("🚀 Starting card generation...")
try:
logger.debug("Initializing OpenAI client")
client = OpenAI(api_key=api_key_input)
except Exception as e:
logger.error(f"Failed to initialize OpenAI client: {str(e)}", exc_info=True)
raise gr.Error(f"Failed to initialize OpenAI client: {str(e)}")
model = model_name
flattened_data = []
total = 0
progress_tracker = gr.Progress(track_tqdm=True)
system_prompt = f"""
You are an expert educator in {subject}, creating an optimized learning sequence.
Your goal is to:
1. Break down the subject into logical concepts
2. Identify prerequisites and learning outcomes
3. Generate cards that build upon each other
4. Address and correct common misconceptions
5. Include verification steps to minimize hallucinations
6. Provide a recommended study order
For explanations and examples:
- Keep explanations in plain text
- Format code examples with triple backticks (```)
- Separate conceptual examples from code examples
- Use clear, concise language
Keep in mind the user's preferences: {preference_prompt}
"""
topic_prompt = f"""
Generate the top {topic_number} important subjects to know about {subject} in
order of ascending difficulty. Return your response as a JSON object with the following structure:
{{
"topics": [
{{
"name": "topic name",
"difficulty": "beginner/intermediate/advanced",
"description": "brief description"
}}
]
}}
"""
try:
logger.info("Generating topics...")
topics_response = structured_output_completion(
client,
model,
{"type": "json_object"},
system_prompt,
topic_prompt
)
if not topics_response or "topics" not in topics_response:
logger.error("Invalid topics response format")
raise gr.Error("Failed to generate topics. Please try again.")
topics = topics_response["topics"]
gr.Info(f"✨ Generated {len(topics)} topics successfully!")
# Generate cards for each topic
for i, topic in enumerate(progress_tracker.tqdm(topics, desc="Generating cards")):
progress_html = f"""
<div style="text-align: center">
<p>Generating cards for topic {i+1}/{len(topics)}: {topic["name"]}</p>
<p>Cards generated so far: {total}</p>
</div>
"""
try:
cards = generate_cards_batch(
client,
model,
topic["name"],
cards_per_topic,
system_prompt,
batch_size=3
)
if cards:
for card_index, card in enumerate(cards, start=1):
index = f"{i+1}.{card_index}"
metadata = card.metadata or {}
row = [
index,
topic["name"],
card.front.question,
card.back.answer,
card.back.explanation,
card.back.example,
metadata.get("prerequisites", []),
metadata.get("learning_outcomes", []),
metadata.get("misconceptions", []),
metadata.get("difficulty", "beginner")
]
flattened_data.append(row)
total += 1
gr.Info(f"✅ Generated {len(cards)} cards for {topic['name']}")
except Exception as e:
logger.error(f"Failed to generate cards for topic {topic['name']}: {str(e)}")
gr.Warning(f"Failed to generate cards for '{topic['name']}'")
continue
final_html = f"""
<div style="text-align: center">
<p>✅ Generation complete!</p>
<p>Total cards generated: {total}</p>
</div>
"""
# Convert to DataFrame with all columns
df = pd.DataFrame(
flattened_data,
columns=[
"Index",
"Topic",
"Question",
"Answer",
"Explanation",
"Example",
"Prerequisites",
"Learning_Outcomes",
"Common_Misconceptions",
"Difficulty"
]
)
return df, final_html, total
except Exception as e:
logger.error(f"Card generation failed: {str(e)}", exc_info=True)
raise gr.Error(f"Card generation failed: {str(e)}")
# Update the BASIC_MODEL definition with enhanced CSS/HTML
BASIC_MODEL = genanki.Model(
random.randrange(1 << 30, 1 << 31),
'AnkiGen Enhanced',
fields=[
{'name': 'Question'},
{'name': 'Answer'},
{'name': 'Explanation'},
{'name': 'Example'},
{'name': 'Prerequisites'},
{'name': 'Learning_Outcomes'},
{'name': 'Common_Misconceptions'},
{'name': 'Difficulty'}
],
templates=[{
'name': 'Card 1',
'qfmt': '''
<div class="card question-side">
<div class="difficulty-indicator {{Difficulty}}"></div>
<div class="content">
<div class="question">{{Question}}</div>
<div class="prerequisites" onclick="event.stopPropagation();">
<div class="prerequisites-toggle">Show Prerequisites</div>
<div class="prerequisites-content">{{Prerequisites}}</div>
</div>
</div>
</div>
<script>
document.querySelector('.prerequisites-toggle').addEventListener('click', function(e) {
e.stopPropagation();
this.parentElement.classList.toggle('show');
});
</script>
''',
'afmt': '''
<div class="card answer-side">
<div class="content">
<div class="question-section">
<div class="question">{{Question}}</div>
<div class="prerequisites">
<strong>Prerequisites:</strong> {{Prerequisites}}
</div>
</div>
<hr>
<div class="answer-section">
<h3>Answer</h3>
<div class="answer">{{Answer}}</div>
</div>
<div class="explanation-section">
<h3>Explanation</h3>
<div class="explanation-text">{{Explanation}}</div>
</div>
<div class="example-section">
<h3>Example</h3>
<div class="example-text"></div>
<pre><code>{{Example}}</code></pre>
</div>
<div class="metadata-section">
<div class="learning-outcomes">
<h3>Learning Outcomes</h3>
<div>{{Learning_Outcomes}}</div>
</div>
<div class="misconceptions">
<h3>Common Misconceptions - Debunked</h3>
<div>{{Common_Misconceptions}}</div>
</div>
<div class="difficulty">
<h3>Difficulty Level</h3>
<div>{{Difficulty}}</div>
</div>
</div>
</div>
</div>
''',
}],
css='''
/* Base styles */
.card {
font-family: 'Inter', system-ui, -apple-system, sans-serif;
font-size: 16px;
line-height: 1.6;
color: #1a1a1a;
max-width: 800px;
margin: 0 auto;
padding: 20px;
background: #ffffff;
}
@media (max-width: 768px) {
.card {
font-size: 14px;
padding: 15px;
}
}
/* Question side */
.question-side {
position: relative;
min-height: 200px;
}
.difficulty-indicator {
position: absolute;
top: 10px;
right: 10px;
width: 10px;
height: 10px;
border-radius: 50%;
}
.difficulty-indicator.beginner { background: #4ade80; }
.difficulty-indicator.intermediate { background: #fbbf24; }
.difficulty-indicator.advanced { background: #ef4444; }
.question {
font-size: 1.3em;
font-weight: 600;
color: #2563eb;
margin-bottom: 1.5em;
}
.prerequisites {
margin-top: 1em;
font-size: 0.9em;
color: #666;
}
.prerequisites-toggle {
color: #2563eb;
cursor: pointer;
text-decoration: underline;
}
.prerequisites-content {
display: none;
margin-top: 0.5em;
padding: 0.5em;
background: #f8fafc;
border-radius: 4px;
}
.prerequisites.show .prerequisites-content {
display: block;
}
/* Answer side */
.answer-section,
.explanation-section,
.example-section {
margin: 1.5em 0;
padding: 1.2em;
border-radius: 8px;
box-shadow: 0 2px 4px rgba(0,0,0,0.05);
}
.answer-section {
background: #f0f9ff;
border-left: 4px solid #2563eb;
}
.explanation-section {
background: #f0fdf4;
border-left: 4px solid #4ade80;
}
.example-section {
background: #fff7ed;
border-left: 4px solid #f97316;
}
/* Code blocks */
pre code {
display: block;
padding: 1em;
background: #1e293b;
color: #e2e8f0;
border-radius: 6px;
overflow-x: auto;
font-family: 'Fira Code', 'Consolas', monospace;
font-size: 0.9em;
}
/* Metadata tabs */
.metadata-tabs {
margin-top: 2em;
border: 1px solid #e5e7eb;
border-radius: 8px;
overflow: hidden;
}
.tab-buttons {
display: flex;
background: #f8fafc;
border-bottom: 1px solid #e5e7eb;
}
.tab-btn {
flex: 1;
padding: 0.8em;
border: none;
background: none;
cursor: pointer;
font-weight: 500;
color: #64748b;
transition: all 0.2s;
}
.tab-btn:hover {
background: #f1f5f9;
}
.tab-btn.active {
color: #2563eb;
background: #fff;
border-bottom: 2px solid #2563eb;
}
.tab-content {
display: none;
padding: 1.2em;
}
.tab-content.active {
display: block;
}
/* Responsive design */
@media (max-width: 640px) {
.tab-buttons {
flex-direction: column;
}
.tab-btn {
width: 100%;
text-align: left;
padding: 0.6em;
}
.answer-section,
.explanation-section,
.example-section {
padding: 1em;
margin: 1em 0;
}
}
/* Animations */
@keyframes fadeIn {
from { opacity: 0; }
to { opacity: 1; }
}
.card {
animation: fadeIn 0.3s ease-in-out;
}
.tab-content.active {
animation: fadeIn 0.2s ease-in-out;
}
'''
)
# Split the export functions
def export_csv(data):
"""Export the generated cards as a CSV file"""
if data is None:
raise gr.Error("No data to export. Please generate cards first.")
if len(data) < 2: # Minimum 2 cards
raise gr.Error("Need at least 2 cards to export.")
try:
gr.Info("💾 Exporting to CSV...")
csv_path = "anki_cards.csv"
data.to_csv(csv_path, index=False)
gr.Info("✅ CSV export complete!")
return gr.File(value=csv_path, visible=True)
except Exception as e:
logger.error(f"Failed to export CSV: {str(e)}", exc_info=True)
raise gr.Error(f"Failed to export CSV: {str(e)}")
def export_deck(data, subject):
"""Export the generated cards as an Anki deck with pedagogical metadata"""
if data is None:
raise gr.Error("No data to export. Please generate cards first.")
if len(data) < 2: # Minimum 2 cards
raise gr.Error("Need at least 2 cards to export.")
try:
gr.Info("💾 Creating Anki deck...")
deck_id = random.randrange(1 << 30, 1 << 31)
deck = genanki.Deck(deck_id, f"AnkiGen - {subject}")
records = data.to_dict('records')
# Update the model to include metadata fields
global BASIC_MODEL
BASIC_MODEL = genanki.Model(
random.randrange(1 << 30, 1 << 31),
'AnkiGen Enhanced',
fields=[
{'name': 'Question'},
{'name': 'Answer'},
{'name': 'Explanation'},
{'name': 'Example'},
{'name': 'Prerequisites'},
{'name': 'Learning_Outcomes'},
{'name': 'Common_Misconceptions'},
{'name': 'Difficulty'}
],
templates=[{
'name': 'Card 1',
'qfmt': '''
<div class="card question">
<div class="content">{{Question}}</div>
<div class="prerequisites">Prerequisites: {{Prerequisites}}</div>
</div>
''',
'afmt': '''
<div class="card answer">
<div class="question">{{Question}}</div>
<hr>
<div class="content">
<div class="answer-section">
<h3>Answer:</h3>
<div>{{Answer}}</div>
</div>
<div class="explanation-section">
<h3>Explanation:</h3>
<div>{{Explanation}}</div>
</div>
<div class="example-section">
<h3>Example:</h3>
<pre><code>{{Example}}</code></pre>
</div>
<div class="metadata-section">
<h3>Prerequisites:</h3>
<div>{{Prerequisites}}</div>
<h3>Learning Outcomes:</h3>
<div>{{Learning_Outcomes}}</div>
<h3>Watch out for:</h3>
<div>{{Common_Misconceptions}}</div>
<h3>Difficulty Level:</h3>
<div>{{Difficulty}}</div>
</div>
</div>
</div>
'''
}],
css='''
.card {
font-family: 'Inter', system-ui, -apple-system, sans-serif;
font-size: 16px;
line-height: 1.6;
color: #1a1a1a;
max-width: 800px;
margin: 0 auto;
padding: 20px;
background: #ffffff;
}
.question {
font-size: 1.3em;
font-weight: 600;
color: #2563eb;
margin-bottom: 1.5em;
}
.prerequisites {
font-size: 0.9em;
color: #666;
margin-top: 1em;
font-style: italic;
}
.answer-section,
.explanation-section,
.example-section {
margin: 1.5em 0;
padding: 1.2em;
border-radius: 8px;
box-shadow: 0 2px 4px rgba(0,0,0,0.05);
}
.answer-section {
background: #f0f9ff;
border-left: 4px solid #2563eb;
}
.explanation-section {
background: #f0fdf4;
border-left: 4px solid #4ade80;
}
.example-section {
background: #fff7ed;
border-left: 4px solid #f97316;
}
.metadata-section {
background: #f8f9fa;
padding: 1em;
border-radius: 6px;
margin: 1em 0;
}
pre code {
display: block;
padding: 1em;
background: #1e293b;
color: #e2e8f0;
border-radius: 6px;
overflow-x: auto;
font-family: 'Fira Code', 'Consolas', monospace;
font-size: 0.9em;
}
'''
)
# Add notes to the deck
for record in records:
note = genanki.Note(
model=BASIC_MODEL,
fields=[
str(record['Question']),
str(record['Answer']),
str(record['Explanation']),
str(record['Example']),
str(record['Prerequisites']),
str(record['Learning_Outcomes']),
str(record['Common_Misconceptions']),
str(record['Difficulty'])
]
)
deck.add_note(note)
# Create a temporary directory for the package
with tempfile.TemporaryDirectory() as temp_dir:
output_path = Path(temp_dir) / "anki_deck.apkg"
package = genanki.Package(deck)
package.write_to_file(output_path)
# Copy to a more permanent location
final_path = "anki_deck.apkg"
with open(output_path, 'rb') as src, open(final_path, 'wb') as dst:
dst.write(src.read())
gr.Info("✅ Anki deck export complete!")
return gr.File(value=final_path, visible=True)
except Exception as e:
logger.error(f"Failed to export Anki deck: {str(e)}", exc_info=True)
raise gr.Error(f"Failed to export Anki deck: {str(e)}")
# Add this near the top where we define our CSS
js_storage = """
async () => {
// Load decks from localStorage
const loadDecks = () => {
const decks = localStorage.getItem('ankigen_decks');
return decks ? JSON.parse(decks) : [];
};
// Save decks to localStorage
const saveDecks = (decks) => {
localStorage.setItem('ankigen_decks', JSON.stringify(decks));
};
// Add methods to window for Gradio to access
window.loadStoredDecks = loadDecks;
window.saveStoredDecks = saveDecks;
// Initial load
return loadDecks();
}
"""
# Create a custom theme
custom_theme = gr.themes.Soft().set(
body_background_fill="*background_fill_secondary",
block_background_fill="*background_fill_primary",
block_border_width="0",
button_primary_background_fill="*primary_500",
button_primary_text_color="white",
)
def analyze_learning_path(api_key, description, model):
"""Analyze a job description or learning goal to create a structured learning path"""
try:
client = OpenAI(api_key=api_key)
except Exception as e:
logger.error(f"Failed to initialize OpenAI client: {str(e)}")
raise gr.Error(f"Failed to initialize OpenAI client: {str(e)}")
system_prompt = """You are an expert curriculum designer and educational consultant.
Your task is to analyze learning goals and create structured, achievable learning paths.
Break down complex topics into manageable subjects, identify prerequisites,
and suggest practical projects that reinforce learning.
Focus on creating a logical progression that builds upon previous knowledge."""
path_prompt = f"""
Analyze this description and create a structured learning path.
Return your analysis as a JSON object with the following structure:
{{
"subjects": [
{{
"Subject": "name of the subject",
"Prerequisites": "required prior knowledge",
"Time Estimate": "estimated time to learn"
}}
],
"learning_order": "recommended sequence of study",
"projects": "suggested practical projects"
}}
Description to analyze:
{description}
"""
try:
response = structured_output_completion(
client,
model,
{"type": "json_object"},
system_prompt,
path_prompt
)
# Format the response for the UI
subjects_df = pd.DataFrame(response["subjects"])
learning_order_text = f"### Recommended Learning Order\n{response['learning_order']}"
projects_text = f"### Suggested Projects\n{response['projects']}"