From 99acf56b07ed683211d4fb018dbbd1e3343a38fa Mon Sep 17 00:00:00 2001 From: Brandon Flores Date: Fri, 22 Mar 2024 17:59:22 -0500 Subject: [PATCH] Updated heading format and page name --- docs/make.jl | 2 +- docs/src/{types.md => numeric.md} | 12 +++++++----- 2 files changed, 8 insertions(+), 6 deletions(-) rename docs/src/{types.md => numeric.md} (92%) diff --git a/docs/make.jl b/docs/make.jl index 1d97aed..263604d 100644 --- a/docs/make.jl +++ b/docs/make.jl @@ -18,7 +18,7 @@ makedocs(; ), pages=[ "Home" => "index.md", - "Types" => "types.md", + "Clifford number types" => "numeric.md", "Operations" => "operations.md", "API" => "api.md" ], diff --git a/docs/src/types.md b/docs/src/numeric.md similarity index 92% rename from docs/src/types.md rename to docs/src/numeric.md index 0c991ec..43dcca1 100644 --- a/docs/src/types.md +++ b/docs/src/numeric.md @@ -2,7 +2,7 @@ This package exports a variety of types that represents elements of Clifford algebras. -## `AbstractCliffordNumber{Q,T}` +## `AbstractCliffordNumber{Q,T}` and subtypes The `AbstractCliffordNumber{Q,T}` type is the supertype for all implmentations of Clifford numbers. `Q` is a `QuadraticForm`, which describes the number of dimensions with positive, negative, and zero @@ -30,7 +30,7 @@ ones described below. CliffordNumbers.CliffordNumber ``` -### `EvenCliffordNumber{Q,T,L}` and `OddCliffordNumber{Q,T,L}` +### `EvenCliffordNumber{Q,T,L}` and `OddCliffordNumber{Q,T,L}`: even and odd graded elements These types represent Clifford numbers of exclusively even or odd grade, respectively. @@ -44,7 +44,7 @@ CliffordNumbers.OddCliffordNumber CliffordNumbers.Z2CliffordNumber ``` -### `KVector{K,Q,T,L}` +### `KVector{K,Q,T,L}`: elements of homogeneous grade This type represents a k-vector, or a Clifford number of homogeneous grade, with the parameter `K` indicating the grade. @@ -124,6 +124,8 @@ ERROR: InexactError: ... !!! danger This is an extremely important point: **construction of a Clifford number type with fewer grades than the input performs a grade projection operation.** Conversion *will* throw an error if the - result is not exactly representable. This is ***not*** how other subtypes of `Number` defined by - Julia Base behave, as the conversion operation is identical to the constructor. + result is not exactly representable. + + **This is not how other subtypes of `Number` defined by Julia Base behave**, as their conversion + operations are generally defined to be identical to the constructor.