-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathdemo_virtual_lesion.m
302 lines (264 loc) · 12 KB
/
demo_virtual_lesion.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
function [fh, fe] = demo_virtual_lesion()
% Example of Virtual Lesion computation using the multidimensional encoding
% model and the LiFE method.
%
% This demo function illustrates how to perfomr a virtual lesion by using
% the multidimensional connectome encoding framework.
%
% The demo reproduces some of the results initially published in Pestilli
% et al., Nature Methods 2014 and replicated in Caiafa and Pestilli
% forthcoming.
%
% Copyright (2016), Franco Pestilli (Indiana Univ.) - Cesar F. Caiafa
% (CONICET)
%
% email: [email protected] and [email protected]
%% (0) Check matlab dependencies and path settings.
if ~exist('vistaRootPath.m','file');
disp('Vistasoft package either not installed or not on matlab path.')
error('Please, download it from https://github.com/vistalab/vistasoft');
end
if ~exist('mbaComputeFibersOutliers','file')
disp('ERROR: mba package either not installed or not on matlab path.')
error('Please, download it from https://github.com/francopestilli/mba')
end
if ~exist('feDemoDataPath.m','file');
disp('ERROR: demo dataset either not installed or not on matlab path.')
error('Please, download it from http://purl.dlib.indiana.edu/iusw/data/2022/20995/Demo_Data_for_Multidimensional_Encoding_of_Brain_Connectomes.tar.gz')
end
%% (1) Compute Virtual Lesion (VL) from fe structures.
%
% The demo data set provides a series of precomputed fascicles. These
% fascicles were segmented given known anatomical atlases of thehuman white
% matter (Mori, Susumu, et al. MRI atlas of human white matter. Elsevier,
% 2005.) using the AFQ toolbox (https://github.com/jyeatman/AFQ).
%
% The demo will ask to select one out of 20 major tracts. We will then use
% that tract to perform a virtual leasion using the LiFE toolbox. The
% virtual lesion operation will inform us of the statistical evidence for
% the tract given the tractogprahy solution and the data set provided.
%
% We load one precomputed LiFE structure (FE structure)
%
% The structure we load is provided as part of the Demo Data set.
%
% It was generated using one subject from the STN diffusion-weighted dataset
% the MRTRIX toolbox, probabilistic tracking based of the CSD model (Lmax=10).
disp('loading fe_structures for FP subject in STN dataset ...')
feFileName = fullfile(feDemoDataPath('STN','sub-FP','fe_structures'), ...
'fe_structure_FP_96dirs_b2000_1p5iso_STC_run01_SD_PROB_lmax10_connNUM01.mat');
load(feFileName)
% All fascicles in a full brain connectome have been encoded into a three
% dimensional array, tensor Phi. Phi is available inside the FE sctructure
% we just loaded. Each dimension of Phi encodes different properties of the
% connectome. Mode 1 the orientation of the connectome fascicles. Mode 2
% the spatial location of each node/fascile. Mode 3 the identify of each
% fascicles, also called fascicle indices.
%
% A white matter tract is defined as a set of fascicles. To identify a
% tract within Phi we need to select a group of fascicles within Phi along Mode 3.
%
% First we find the indices of all fascicles in the connectome that have a
% non-zero weight associated ('ind nzw'). These are fascicles that contributed a
% reliable amount in predicting the diffusion signal. A simple call of the
% hub function feGet.m helps with this.
ind_nzw = feGet(fe,'ind nzw');
% After that we load a precomputed tract segmentation (classification). A
% segmentaion of tracts was performed on the connectome. Edges of the
% connectome were classified as being part of one of twenty major human
% white matter tracts. For example the arcuate fasciculus, or the
% cortico-spinal tract.
%
FileName = fullfile(feDemoDataPath('STN','sub-FP','tracts_classification'), ...
'fe_structure_FP_96dirs_b2000_1p5iso_STC_run01_500000_SD_PROB_lmax10_connNUM01_TRACTS.mat');
load(FileName) % Load tract classification file from disk.
% Pick a tract and return indices of tract-fascicles in the encoded
% connectome (Phi tensor).
[ind_fascicles_in_tract, ~, ~] = demo_local_choose_tract(fe,classification, fascicles, ind_nzw);
% Remove the fascicles of the tract to be lesioned (actually perform the
% lesion) from the encoded connectome.
%
% Compute the root-mean-squared error of the model with and without tract
% in the white-matter voxels comprised by the tract.
[rmse_wVL, rmse_woVL]= feComputeVirtualLesion_norm(fe,ind_fascicles_in_tract);
% Compute the statistical strenght of evidence for the tract.
%
% This means measure the change in root-mean-squared error in predicting
% the measured demeaned diffusion-weighted MRI signal due to the tract
% lesion.
se = feComputeEvidence_norm(rmse_woVL,rmse_wVL);
% Plot the Strength of evidence.
%
% Plot the distributions of resampled mean RMSE
% used to compute the strength of evidence (S).
fh(1) = distributionPlotStrengthOfEvidence(se);
% Plot the two RMSE distributions with and without lesion.
%
% Compare the distributions using the Earth Movers Distance. Plot the
% distributions of RMSE for the two models and report the Earth Movers
% Distance between the distributions.
fh(2) = distributionPlotEarthMoversDistance(se);
%% (3) Plot the anatomy of the tract and its path-neighborhood.
%
% Below we show how to extract a path neighborhood of a tract and the tract
% out of the FE structure, given only the indices of the fascicles of the
% tract in the condidate whole-brain tractography.
% Get full candidate connectome.
fg_whole_brain = feGet(fe,'fibers acpc');
% Get tract fascicles.
fg_tract = fgExtract(fg_whole_brain,ind_fascicles_in_tract,'keep');
% Get path-neightborhood of the tract using the connectome encoding, via
% feGet.m
ind_pathneighborhood = feGet(fe,'Path Neighborhood',ind_fascicles_in_tract);
fg_pathn = fgExtract(fg_whole_brain,ind_pathneighborhood,'keep');
clear fg_whole_brain
% Plot the anatomy of tract and neighborhood.
fh = [fh, demo_local_plot_anatomy(fg_tract, fg_pathn)];
end
%
% -- local helper functions -- %
%
function fh = demo_local_plot_anatomy(fg_tract,fg_pathn)
% -
% Visualize the major tract and its path neighborhood
%
colors = {[.1 .25 .65],[.75 .25 .1]};
viewCoords = [90,0];
proportion_to_show = .05;
threshold_length = 10;
% Prepare the plot of tract and neighborhood
fg{1} = fg_tract;
% We split the fibers of the path-neighborhood that enter and exit the
% tract ROI multiple times into separate fascicles. This is convenient for
% visualizing the fascicles.
fg_pathn.fibers = mbaFiberSplitLoops(fg_pathn.fibers);
fg_pathn = rmfield(fg_pathn,'coordspace');
c = 1;
for ii = 1:length(fg_pathn.fibers)
if length(fg_pathn.fibers{ii}) > threshold_length
fibers{c} = fg_pathn.fibers{ii};
c = c + 1;
end
end
fg_pathn.fibers = fibers; clear fibers
% Pick a percentage of fascicles to display (the PN can be too dense for visualization).
fibs_indx = randsample(1:length(fg_pathn.fibers), ...
round(length(fg_pathn.fibers)*proportion_to_show));
fg{2}.fibers = fg_pathn.fibers(fibs_indx);
% plot tractPath-Neighborhood
fig_name = char(strcat('Tract + PN (',num2str(proportion_to_show*100),'% of PN fascicles)'));
[fh(1), ~] = plotFasciclesNoAnat(fg, colors, viewCoords, fig_name, [1 2]);
dootherplots = true;
if dootherplots
% plot tract
fig_name = 'Tract only';
[fh(2), ~] = plotFasciclesNoAnat(fg, colors, viewCoords, fig_name, [1]);
% plot PN
fig_name = char(strcat('PN (only ',num2str(proportion_to_show*100),'% of PN fascicles)') );
[fh(3), ~] = plotFasciclesNoAnat(fg, colors, viewCoords, fig_name, [2]);
end
% Change plot view.
view(0,90)
end
function [ind_good_fascicles_in_tract, tract_num, tract_name] = demo_local_choose_tract(fe,classification, fascicles, ind_nzw)
%
% Local function to select a tract from a series of segemnted tracts.
%
% Aask to choose a major tract as example.
% Perform some preprocessing to return the appropriate tract indices that
% can be used for the virtual lesion process.
%
prompt = 'Please select a major tract number (1 to 20): \n1-2: Anterior thalamic radiation (ATR) \n3-4: Cortico Spinal Tract (CST) \n5-6: Cingulum (cingulate gyrus) (Cing) \n7-8: Cingulum (hippocampus) (Hipp) \n9-10: Forceps minor/major \n11-12: Inferior fronto-occipital fasciculus (InFOF) \n13-14: Inferior longitudinal fasciculus (InLF) \n15-16: Superior longitudinal fasciculus (SuLF) \n17-18: Uncinate fasciculus (UF) \n19:20: Superior longitudinal fasciculus (temporal part) (Temp) \n\n';
tract_num = input(prompt);
tract_name = char(classification.names(tract_num));
fprintf('[%s] Extracting tract %s from Encoding model... \n', mfilename, tract_name);
% First, given a selected tract index (tract_num), we find the indices of
% the fascicles in the cadidate connectome (all fascicles returned by
% tractography).
ind_tract_fascicles = find(classification.index == tract_num);
% We clean all major tracs. This means that we remove anatomical outliers, namely fascicles too far from the mean anatomical location and lenght of the This is because some of the initial
% segmentation performed by AFQ can return tracts that are too far away
% from the expected tract path. To overcome this limitation we accept
% tracts that are (1) close by the mean tract path coordinates, (2) not
% tool long or too short from the average length of the tract fascicles.
[~, fascicles_to_keep] = mbaComputeFibersOutliers(fascicles(tract_num),3,3);
fascicles_to_keep = ind_tract_fascicles(fascicles_to_keep);
% Now we use the indices of the fascicles in the tract (ind_tracts1) and the indices of the
% non-zero weight fibers (ind_nzw) to identify the subset of tract 1 that
% is supported by the data.
ind_good_fascicles_in_tract = ind_nzw(fascicles_to_keep);
end
function fh = distributionPlotStrengthOfEvidence(se)
%
% Make a plot of the Strengh-of-evidence result.
%
y_e = se.s.unlesioned_e;
ywo_e = se.s.lesioned_e;
dprime = se.s.mean;
std_dprime = se.s.std;
xhis = se.s.unlesioned.xbins;
woxhis = se.s.lesioned.xbins;
histcolor{1} = [0 0 0];
histcolor{2} = [.95 .6 .5];
figName = sprintf('Strength_of_Evidence_test_without_VL_vs_with_VL');
fh = mrvNewGraphWin(figName);
patch([xhis,xhis],y_e(:),histcolor{1},'FaceColor',histcolor{1},'EdgeColor',histcolor{1});
hold on
patch([woxhis,woxhis],ywo_e(:),histcolor{2},'FaceColor',histcolor{2},'EdgeColor',histcolor{2});
set(gca,'tickdir','out', ...
'box','off', ...
'ticklen',[.025 .05], ...
'ylim',[0 1], ...
'xlim',[0 0.2], ...
'xtick',[0 0.1 0.2], ...
'ytick',[0 .5 1], ...
'fontsize',16)
ylabel('Probability','fontsize',16)
xlabel('rmse','fontsize',16')
title(sprintf('Strength of evidence:\n mean %2.3f - std %2.3f',dprime,std_dprime), ...
'FontSize',16)
legend({'without VL','with VL'})
end
function fh = distributionPlotEarthMoversDistance(se)
%
% Make a plot fo the Earth Mover's distance result.
%
nolesion = se.nolesion;
lesion = se.lesion;
em = se.em;
histcolor{1} = [0 0 0];
histcolor{2} = [.95 .6 .5];
figName = sprintf('EMD_without_VL_vs_with_VL');
fh = mrvNewGraphWin(figName);
plot(nolesion.xhist,nolesion.hist,'r-','color',histcolor{1},'linewidth',4);
hold on
plot(lesion.xhist,lesion.hist,'r-','color',histcolor{2},'linewidth',4);
set(gca,'tickdir','out', ...
'box','off', ...
'ticklen',[.025 .05], ...
'ylim',[0 .12], ...
'xlim',[0 0.2], ...
'xtick',[0 0.1 0.2], ...
'ytick',[0 .5 1], ...
'fontsize',16)
ylabel('Proportion white-matter volume','fontsize',16)
xlabel('RMSE','fontsize',16')
title(sprintf('Earth Movers Distance: %2.3f',em.mean),'FontSize',16)
legend({'without VL','with VL'})
end
% Local functions to plot the tracts
function [fig_h, light_h] = plotFasciclesNoAnat(fascicles, color, viewCoords, fig_name,tracts_to_clean)
fig_h = figure('name',fig_name,'color','k');
hold on
set(gca,'visible','off','ylim',[-108 69],'xlim',[-75 75],'zlim',[-45 78],'Color','w')
for iFas = 1:length(tracts_to_clean)
[~, light_h] = mbaDisplayConnectome(fascicles{ tracts_to_clean(iFas) }.fibers,fig_h,color{ tracts_to_clean(iFas) },'single');
delete(light_h)
end
view(viewCoords(1),viewCoords(2))
light_h = camlight('right');
lighting phong;
%set(fig_h,'Units','normalized', 'Position',[0.5 .2 .4 .8]);
set(gcf,'Color',[1 1 1])
drawnow
end