-
Notifications
You must be signed in to change notification settings - Fork 219
/
cell_emb.py
281 lines (249 loc) · 9.8 KB
/
cell_emb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import json
import os
from pathlib import Path
from typing import Optional, Union
import numpy as np
import scanpy as sc
import torch
from anndata import AnnData
from torch.utils.data import DataLoader, SequentialSampler
from tqdm import tqdm
from .. import logger
from ..data_collator import DataCollator
from ..model import TransformerModel
from ..tokenizer import GeneVocab
from ..utils import load_pretrained
PathLike = Union[str, os.PathLike]
def get_batch_cell_embeddings(
adata,
cell_embedding_mode: str = "cls",
model=None,
vocab=None,
max_length=1200,
batch_size=64,
model_configs=None,
gene_ids=None,
use_batch_labels=False,
) -> np.ndarray:
"""
Get the cell embeddings for a batch of cells.
Args:
adata (AnnData): The AnnData object.
cell_embedding_mode (str): The mode to get the cell embeddings. Defaults to "cls".
model (TransformerModel, optional): The model. Defaults to None.
vocab (GeneVocab, optional): The vocabulary. Defaults to None.
max_length (int): The maximum length of the input sequence. Defaults to 1200.
batch_size (int): The batch size for inference. Defaults to 64.
model_configs (dict, optional): The model configurations. Defaults to None.
gene_ids (np.ndarray, optional): The gene vocabulary ids. Defaults to None.
use_batch_labels (bool): Whether to use batch labels. Defaults to False.
Returns:
np.ndarray: The cell embeddings.
"""
count_matrix = adata.X
count_matrix = (
count_matrix if isinstance(count_matrix, np.ndarray) else count_matrix.A
)
# gene vocabulary ids
if gene_ids is None:
gene_ids = np.array(adata.var["id_in_vocab"])
assert np.all(gene_ids >= 0)
if use_batch_labels:
batch_ids = np.array(adata.obs["batch_id"].tolist())
class Dataset(torch.utils.data.Dataset):
def __init__(self, count_matrix, gene_ids, batch_ids=None):
self.count_matrix = count_matrix
self.gene_ids = gene_ids
self.batch_ids = batch_ids
def __len__(self):
return len(self.count_matrix)
def __getitem__(self, idx):
row = self.count_matrix[idx]
nonzero_idx = np.nonzero(row)[0]
values = row[nonzero_idx]
genes = self.gene_ids[nonzero_idx]
# append <cls> token at the beginning
genes = np.insert(genes, 0, vocab["<cls>"])
values = np.insert(values, 0, model_configs["pad_value"])
genes = torch.from_numpy(genes).long()
values = torch.from_numpy(values)
output = {
"id": idx,
"genes": genes,
"expressions": values,
}
if self.batch_ids is not None:
output["batch_labels"] = self.batch_ids[idx]
return output
if cell_embedding_mode == "cls":
dataset = Dataset(
count_matrix, gene_ids, batch_ids if use_batch_labels else None
)
collator = DataCollator(
do_padding=True,
pad_token_id=vocab[model_configs["pad_token"]],
pad_value=model_configs["pad_value"],
do_mlm=False,
do_binning=True,
max_length=max_length,
sampling=True,
keep_first_n_tokens=1,
)
data_loader = DataLoader(
dataset,
batch_size=batch_size,
sampler=SequentialSampler(dataset),
collate_fn=collator,
drop_last=False,
num_workers=min(len(os.sched_getaffinity(0)), batch_size),
pin_memory=True,
)
device = next(model.parameters()).device
cell_embeddings = np.zeros(
(len(dataset), model_configs["embsize"]), dtype=np.float32
)
with torch.no_grad(), torch.cuda.amp.autocast(enabled=True):
count = 0
for data_dict in tqdm(data_loader, desc="Embedding cells"):
input_gene_ids = data_dict["gene"].to(device)
src_key_padding_mask = input_gene_ids.eq(
vocab[model_configs["pad_token"]]
)
embeddings = model._encode(
input_gene_ids,
data_dict["expr"].to(device),
src_key_padding_mask=src_key_padding_mask,
batch_labels=data_dict["batch_labels"].to(device)
if use_batch_labels
else None,
)
embeddings = embeddings[:, 0, :] # get the <cls> position embedding
embeddings = embeddings.cpu().numpy()
cell_embeddings[count : count + len(embeddings)] = embeddings
count += len(embeddings)
cell_embeddings = cell_embeddings / np.linalg.norm(
cell_embeddings, axis=1, keepdims=True
)
else:
raise ValueError(f"Unknown cell embedding mode: {cell_embedding_mode}")
return cell_embeddings
def embed_data(
adata_or_file: Union[AnnData, PathLike],
model_dir: PathLike,
cell_type_key: str = "cell_type",
gene_col: str = "feature_name",
max_length=1200,
batch_size=64,
obs_to_save: Optional[list] = None,
device: Union[str, torch.device] = "cuda",
use_fast_transformer: bool = True,
return_new_adata: bool = False,
) -> AnnData:
"""
Preprocess anndata and embed the data using the model.
Args:
adata_or_file (Union[AnnData, PathLike]): The AnnData object or the path to the
AnnData object.
model_dir (PathLike): The path to the model directory.
cell_type_key (str): The key in adata.obs that contains the cell type labels.
Defaults to "cell_type".
gene_col (str): The column in adata.var that contains the gene names.
max_length (int): The maximum length of the input sequence. Defaults to 1200.
batch_size (int): The batch size for inference. Defaults to 64.
obs_to_save (Optional[list]): The list of obs columns to save in the output adata.
If None, will only keep the column of :attr:`cell_type_key`. Defaults to None.
device (Union[str, torch.device]): The device to use. Defaults to "cuda".
use_fast_transformer (bool): Whether to use flash-attn. Defaults to True.
return_new_adata (bool): Whether to return a new AnnData object. If False, will
add the cell embeddings to a new :attr:`adata.obsm` with key "X_scGPT".
Returns:
AnnData: The AnnData object with the cell embeddings.
"""
if isinstance(adata_or_file, AnnData):
adata = adata_or_file
else:
adata = sc.read_h5ad(adata_or_file)
# verify cell type key and gene col
assert cell_type_key in adata.obs
if gene_col == "index":
adata.var["index"] = adata.var.index
else:
assert gene_col in adata.var
if device == "cuda":
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if not torch.cuda.is_available():
print("WARNING: CUDA is not available. Using CPU instead.")
# LOAD MODEL
model_dir = Path(model_dir)
vocab_file = model_dir / "vocab.json"
model_config_file = model_dir / "args.json"
model_file = model_dir / "best_model.pt"
pad_token = "<pad>"
special_tokens = [pad_token, "<cls>", "<eoc>"]
# vocabulary
vocab = GeneVocab.from_file(vocab_file)
for s in special_tokens:
if s not in vocab:
vocab.append_token(s)
adata.var["id_in_vocab"] = [
vocab[gene] if gene in vocab else -1 for gene in adata.var[gene_col]
]
gene_ids_in_vocab = np.array(adata.var["id_in_vocab"])
logger.info(
f"match {np.sum(gene_ids_in_vocab >= 0)}/{len(gene_ids_in_vocab)} genes "
f"in vocabulary of size {len(vocab)}."
)
adata = adata[:, adata.var["id_in_vocab"] >= 0]
with open(model_config_file, "r") as f:
model_configs = json.load(f)
# Binning will be applied after tokenization. A possible way to do is to use the unified way of binning in the data collator.
vocab.set_default_index(vocab["<pad>"])
genes = adata.var[gene_col].tolist()
gene_ids = np.array(vocab(genes), dtype=int)
# all_counts = adata.layers["counts"]
# num_of_non_zero_genes = [
# np.count_nonzero(all_counts[i]) for i in range(all_counts.shape[0])
# ]
# max_length = min(max_length, np.max(num_of_non_zero_genes) + 1)
model = TransformerModel(
ntoken=len(vocab),
d_model=model_configs["embsize"],
nhead=model_configs["nheads"],
d_hid=model_configs["d_hid"],
nlayers=model_configs["nlayers"],
nlayers_cls=model_configs["n_layers_cls"],
n_cls=1,
vocab=vocab,
dropout=model_configs["dropout"],
pad_token=model_configs["pad_token"],
pad_value=model_configs["pad_value"],
do_mvc=True,
do_dab=False,
use_batch_labels=False,
domain_spec_batchnorm=False,
explicit_zero_prob=False,
use_fast_transformer=use_fast_transformer,
fast_transformer_backend="flash",
pre_norm=False,
)
load_pretrained(model, torch.load(model_file), verbose=False)
model.to(device)
model.eval()
# get cell embeddings
cell_embeddings = get_batch_cell_embeddings(
adata,
cell_embedding_mode="cls",
model=model,
vocab=vocab,
max_length=max_length,
batch_size=batch_size,
model_configs=model_configs,
gene_ids=gene_ids,
use_batch_labels=False,
)
if return_new_adata:
obs_to_save = [cell_type_key] if obs_to_save is None else obs_to_save
obs_df = adata.obs[obs_to_save]
return sc.AnnData(X=cell_embeddings, obs=obs_df, dtype="float32")
adata.obsm["X_scGPT"] = cell_embeddings
return adata