forked from dmlc/xgboost
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathxgboost_main.cpp
249 lines (244 loc) · 7.95 KB
/
xgboost_main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
#define _CRT_SECURE_NO_WARNINGS
#define _CRT_SECURE_NO_DEPRECATE
#include <ctime>
#include <string>
#include <cstring>
#include "io/io.h"
#include "utils/utils.h"
#include "utils/config.h"
#include "learner/learner-inl.hpp"
namespace xgboost {
/*!
* \brief wrapping the training process
*/
class BoostLearnTask{
public:
inline int Run(int argc, char *argv[]) {
if (argc < 2) {
printf("Usage: <config>\n");
return 0;
}
utils::ConfigIterator itr(argv[1]);
while (itr.Next()) {
this->SetParam(itr.name(), itr.val());
}
for (int i = 2; i < argc; ++i) {
char name[256], val[256];
if (sscanf(argv[i], "%[^=]=%s", name, val) == 2) {
this->SetParam(name, val);
}
}
this->InitData();
this->InitLearner();
if (task == "dump") {
this->TaskDump(); return 0;
}
if (task == "eval") {
this->TaskEval(); return 0;
}
if (task == "pred") {
this->TaskPred();
} else {
this->TaskTrain();
}
return 0;
}
inline void SetParam(const char *name, const char *val) {
if (!strcmp("silent", name)) silent = atoi(val);
if (!strcmp("use_buffer", name)) use_buffer = atoi(val);
if (!strcmp("num_round", name)) num_round = atoi(val);
if (!strcmp("pred_margin", name)) pred_margin = atoi(val);
if (!strcmp("ntree_limit", name)) ntree_limit = atoi(val);
if (!strcmp("save_period", name)) save_period = atoi(val);
if (!strcmp("eval_train", name)) eval_train = atoi(val);
if (!strcmp("task", name)) task = val;
if (!strcmp("data", name)) train_path = val;
if (!strcmp("test:data", name)) test_path = val;
if (!strcmp("model_in", name)) model_in = val;
if (!strcmp("model_out", name)) model_out = val;
if (!strcmp("model_dir", name)) model_dir_path = val;
if (!strcmp("fmap", name)) name_fmap = val;
if (!strcmp("name_dump", name)) name_dump = val;
if (!strcmp("name_pred", name)) name_pred = val;
if (!strcmp("dump_stats", name)) dump_model_stats = atoi(val);
if (!strncmp("eval[", name, 5)) {
char evname[256];
utils::Assert(sscanf(name, "eval[%[^]]", evname) == 1, "must specify evaluation name for display");
eval_data_names.push_back(std::string(evname));
eval_data_paths.push_back(std::string(val));
}
learner.SetParam(name, val);
}
public:
BoostLearnTask(void) {
// default parameters
silent = 0;
use_buffer = 1;
num_round = 10;
save_period = 0;
eval_train = 0;
pred_margin = 0;
ntree_limit = 0;
dump_model_stats = 0;
task = "train";
model_in = "NULL";
model_out = "NULL";
name_fmap = "NULL";
name_pred = "pred.txt";
name_dump = "dump.txt";
model_dir_path = "./";
data = NULL;
}
~BoostLearnTask(void){
for (size_t i = 0; i < deval.size(); i++){
delete deval[i];
}
if (data != NULL) delete data;
}
private:
inline void InitData(void) {
if (name_fmap != "NULL") fmap.LoadText(name_fmap.c_str());
if (task == "dump") return;
if (task == "pred") {
data = io::LoadDataMatrix(test_path.c_str(), silent != 0, use_buffer != 0);
} else {
// training
data = io::LoadDataMatrix(train_path.c_str(), silent != 0, use_buffer != 0);
utils::Assert(eval_data_names.size() == eval_data_paths.size(), "BUG");
for (size_t i = 0; i < eval_data_names.size(); ++i) {
deval.push_back(io::LoadDataMatrix(eval_data_paths[i].c_str(), silent != 0, use_buffer != 0));
devalall.push_back(deval.back());
}
std::vector<io::DataMatrix *> dcache(1, data);
for (size_t i = 0; i < deval.size(); ++ i) {
dcache.push_back(deval[i]);
}
// set cache data to be all training and evaluation data
learner.SetCacheData(dcache);
// add training set to evaluation set if needed
if( eval_train != 0 ) {
devalall.push_back(data);
eval_data_names.push_back(std::string("train"));
}
}
}
inline void InitLearner(void) {
if (model_in != "NULL"){
utils::FileStream fi(utils::FopenCheck(model_in.c_str(), "rb"));
learner.LoadModel(fi);
fi.Close();
} else {
utils::Assert(task == "train", "model_in not specified");
learner.InitModel();
}
}
inline void TaskTrain(void) {
const time_t start = time(NULL);
unsigned long elapsed = 0;
learner.CheckInit(data);
for (int i = 0; i < num_round; ++i) {
elapsed = (unsigned long)(time(NULL) - start);
if (!silent) printf("boosting round %d, %lu sec elapsed\n", i, elapsed);
learner.UpdateOneIter(i, *data);
std::string res = learner.EvalOneIter(i, devalall, eval_data_names);
fprintf(stderr, "%s\n", res.c_str());
if (save_period != 0 && (i + 1) % save_period == 0) {
this->SaveModel(i);
}
elapsed = (unsigned long)(time(NULL) - start);
}
// always save final round
if ((save_period == 0 || num_round % save_period != 0) && model_out != "NONE") {
if (model_out == "NULL"){
this->SaveModel(num_round - 1);
} else {
this->SaveModel(model_out.c_str());
}
}
if (!silent){
printf("\nupdating end, %lu sec in all\n", elapsed);
}
}
inline void TaskEval(void) {
learner.EvalOneIter(0, devalall, eval_data_names);
}
inline void TaskDump(void){
FILE *fo = utils::FopenCheck(name_dump.c_str(), "w");
std::vector<std::string> dump = learner.DumpModel(fmap, dump_model_stats != 0);
for (size_t i = 0; i < dump.size(); ++ i) {
fprintf(fo,"booster[%lu]:\n", i);
fprintf(fo,"%s", dump[i].c_str());
}
fclose(fo);
}
inline void SaveModel(const char *fname) const {
utils::FileStream fo(utils::FopenCheck(fname, "wb"));
learner.SaveModel(fo);
fo.Close();
}
inline void SaveModel(int i) const {
char fname[256];
sprintf(fname, "%s/%04d.model", model_dir_path.c_str(), i + 1);
this->SaveModel(fname);
}
inline void TaskPred(void) {
std::vector<float> preds;
if (!silent) printf("start prediction...\n");
learner.Predict(*data, pred_margin != 0, &preds, ntree_limit);
if (!silent) printf("writing prediction to %s\n", name_pred.c_str());
FILE *fo = utils::FopenCheck(name_pred.c_str(), "w");
for (size_t i = 0; i < preds.size(); i++) {
fprintf(fo, "%f\n", preds[i]);
}
fclose(fo);
}
private:
/*! \brief whether silent */
int silent;
/*! \brief whether use auto binary buffer */
int use_buffer;
/*! \brief whether evaluate training statistics */
int eval_train;
/*! \brief number of boosting iterations */
int num_round;
/*! \brief the period to save the model, 0 means only save the final round model */
int save_period;
/*! \brief the path of training/test data set */
std::string train_path, test_path;
/*! \brief the path of test model file, or file to restart training */
std::string model_in;
/*! \brief the path of final model file, to be saved */
std::string model_out;
/*! \brief the path of directory containing the saved models */
std::string model_dir_path;
/*! \brief task to perform */
std::string task;
/*! \brief name of predict file */
std::string name_pred;
/*!\brief limit number of trees in prediction */
int ntree_limit;
/*!\brief whether to directly output margin value */
int pred_margin;
/*! \brief whether dump statistics along with model */
int dump_model_stats;
/*! \brief name of feature map */
std::string name_fmap;
/*! \brief name of dump file */
std::string name_dump;
/*! \brief the paths of validation data sets */
std::vector<std::string> eval_data_paths;
/*! \brief the names of the evaluation data used in output log */
std::vector<std::string> eval_data_names;
private:
io::DataMatrix* data;
std::vector<io::DataMatrix*> deval;
std::vector<const io::DataMatrix*> devalall;
utils::FeatMap fmap;
learner::BoostLearner learner;
};
}
int main(int argc, char *argv[]){
xgboost::random::Seed(0);
xgboost::BoostLearnTask tsk;
return tsk.Run(argc, argv);
}