-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
45 lines (37 loc) · 1.48 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import os
from datetime import datetime
import pytorch_lightning as pl
import pytz
import wandb
from dataloader import ERDataModule
from model import ERNet
from modules.utils import config_parser, get_special_token
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.loggers import WandbLogger
from transformers import AutoTokenizer
if __name__ == "__main__":
wandb.init()
config = config_parser()
pl.seed_everything(config["seed"], workers=True)
prj_dir = os.path.dirname(os.path.abspath(__file__))
MODEL_NAME = config["model"]["model_name"]
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME,
additional_special_tokens=get_special_token(config["train"]["dataset_type"]),
)
dataloader = ERDataModule(config=config, tokenizer=tokenizer)
model = ERNet(config=config, state="train")
model.model.resize_token_embeddings(len(tokenizer))
now = datetime.now(pytz.timezone("Asia/Seoul"))
wandb_logger = WandbLogger()
trainer = pl.Trainer(
callbacks=ModelCheckpoint(
dirpath=f"./checkpoint/{config['model']['model_name'].replace('/', '_')}/{now.strftime('%Y-%m-%d %H.%M.%S')}/",
filename="{epoch}-{val_micro_f1:.2f}",
monitor="val_micro_f1",
mode="max",
),
max_epochs=config["train"]["num_train_epoch"],
logger=wandb_logger,
)
trainer.fit(model=model, train_dataloaders=dataloader)