Skip to content

Latest commit

 

History

History
42 lines (36 loc) · 824 Bytes

README.md

File metadata and controls

42 lines (36 loc) · 824 Bytes

Training and Inference with Integers in Deep Neural Networks

Code example for the ICLR 2018 oral paper

Prerequisites

  • NVIDIA GPU + CUDA + CuDNN
  • Tensorflow (GPU version)
  • python2.7
  • tqdm

Data

Download and generate CIFAR10 dataset:

cd dataSet/
python CIFAR10.py

Config

Change your configurations in the file

gedit source/Option.py

Train

Start training:

cd source/
python Top.py

Citation

If you find this paper or this repository helpful, please cite it:

@inproceedings{
wu2018training,
title={Training and Inference with Integers in Deep Neural Networks},
author={Shuang Wu and Guoqi Li and Feng Chen and Luping Shi},
booktitle={International Conference on Learning Representations},
year={2018},
url={https://openreview.net/forum?id=HJGXzmspb},
}