-
Notifications
You must be signed in to change notification settings - Fork 0
/
features_extract.py
132 lines (116 loc) · 5.64 KB
/
features_extract.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
from skimage.feature import hog
import matplotlib.image as mpimg
import numpy as np
import cv2
def convert_color(img, conv='RGB'):
if conv == 'YCrCb':
return cv2.cvtColor(img, cv2.COLOR_RGB2YCrCb)
elif conv == 'LUV':
return cv2.cvtColor(img, cv2.COLOR_RGB2LUV)
elif conv == 'HLS':
return cv2.cvtColor(img, cv2.COLOR_RGB2HLS)
elif conv == 'HSV':
return cv2.cvtColor(img, cv2.COLOR_RGB2HSV)
elif conv == 'YUV':
return cv2.cvtColor(img, cv2.COLOR_RGB2YUV)
elif conv is not 'RGB':
print('Invalid color space')
return img
def get_hog_features(img, orient, pix_per_cell, cell_per_block,
vis=False, feature_vec=True):
# Call with two outputs if vis==True
if vis == True:
features, hog_image = hog(img, orientations=orient,
pixels_per_cell=(pix_per_cell, pix_per_cell),
cells_per_block=(cell_per_block, cell_per_block),
transform_sqrt=False,
visualise=vis, feature_vector=feature_vec)
return features, hog_image
# Otherwise call with one output
else:
features = hog(img, orientations=orient,
pixels_per_cell=(pix_per_cell, pix_per_cell),
cells_per_block=(cell_per_block, cell_per_block),
transform_sqrt=False,
visualise=vis, feature_vector=feature_vec)
return features
def bin_spatial(img, size=(32, 32)):
color1 = cv2.resize(img[:,:,0], size).ravel()
color2 = cv2.resize(img[:,:,1], size).ravel()
color3 = cv2.resize(img[:,:,2], size).ravel()
return np.hstack((color1, color2, color3))
def color_hist(img, nbins=32):
# Compute the histogram of the color channels separately
channel1_hist = np.histogram(img[:,:,0], bins=nbins)
channel2_hist = np.histogram(img[:,:,1], bins=nbins)
channel3_hist = np.histogram(img[:,:,2], bins=nbins)
# Concatenate the histograms into a single feature vector
hist_features = np.concatenate((channel1_hist[0], channel2_hist[0], channel3_hist[0]))
# Return the individual histograms, bin_centers and feature vector
return hist_features
def extract_features(imgs, w_bboxes=False, color_space='RGB', spatial_size=(32, 32),
hist_bins=32, orient=9,
pix_per_cell=8, cell_per_block=2, hog_channel=0,
spatial_feat=True, hist_feat=True, hog_feat=True):
# Create a list to append feature vectors to
features = []
# Iterate through the list of images
for file in imgs:
file_features = []
# Read in each one by one
if w_bboxes:
bbox = file["bbox"]
min_bbox_size = min( bbox[1][1]-bbox[0][1], bbox[1][0]-bbox[0][0] )
max_bbox_size = max( bbox[1][1]-bbox[0][1], bbox[1][0]-bbox[0][0] )
# check if bounding boxes indeces are ok
if min_bbox_size is 0 or max_bbox_size is 0:
continue
# calculate bounding box aspect ratio
bbox_aratio = max_bbox_size / min_bbox_size
# if aspect ratio is not adequate or if bounding box is too small, skip image
if min_bbox_size >= 64 and bbox_aratio < 2.5:
image = mpimg.imread(os.path.join('.', 'object-detection-crowdai', file["file"]))
image = image[bbox[0][1]:bbox[1][1], bbox[0][0]:bbox[1][0]]
# if bounding box is too far from square shape, crop square shape out of it
if bbox_aratio > 1.2:
image = image[0:min_bbox_size, 0:min_bbox_size]
# resize image to standard 64-by-64 image
image_0 = cv2.resize(image[:,:,0], (64,64))
image_1 = cv2.resize(image[:,:,1], (64,64))
image_2 = cv2.resize(image[:,:,2], (64,64))
image = np.dstack((image_0, image_1, image_2))
else:
continue
else:
image = mpimg.imread(file)
# scaling to [0, 1] range in case range was initially [0, 255] to enforce consistency
if (np.max(image) > 1.0):
image = image.astype(np.float32)/255
else:
image = image.astype(np.float32)
# apply color conversion if other than 'RGB'
feature_image = convert_color(np.copy(image), conv=color_space)
if spatial_feat == True:
spatial_features = bin_spatial(feature_image, size=spatial_size)
file_features.append(spatial_features)
if hist_feat == True:
# Apply color_hist()
hist_features = color_hist(feature_image, nbins=hist_bins)
file_features.append(hist_features)
if hog_feat == True:
# Call get_hog_features() with vis=False, feature_vec=True
if hog_channel == 'ALL':
hog_features = []
for channel in range(feature_image.shape[2]):
hog_features.append(get_hog_features(feature_image[:,:,channel],
orient, pix_per_cell, cell_per_block,
vis=False, feature_vec=True))
hog_features = np.ravel(hog_features)
else:
hog_features = get_hog_features(feature_image[:,:,hog_channel], orient,
pix_per_cell, cell_per_block, vis=False, feature_vec=True)
# Append the new feature vector to the features list
file_features.append(hog_features)
features.append(np.concatenate(file_features))
# Return list of feature vectors
return features