-
Notifications
You must be signed in to change notification settings - Fork 378
/
vq_vae_keras.py
448 lines (375 loc) · 13.3 KB
/
vq_vae_keras.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
#! -*- coding: utf-8 -*-
# Keras简单实现VQ-VAE
import numpy as np
import scipy as sp
from scipy import misc
import glob
import imageio
from keras.models import Model
from keras.layers import *
from keras import backend as K
from keras.optimizers import Adam
from keras.callbacks import Callback
import os
if not os.path.exists('samples'):
os.mkdir('samples')
imgs = glob.glob('../../CelebA-HQ/train/*.png')
np.random.shuffle(imgs)
img_dim = 128
z_dim = 128
num_codes = 64
batch_size = 64
num_layers = int(np.log2(img_dim) - 4)
def imread(f):
x = misc.imread(f, mode='RGB')
x = misc.imresize(x, (img_dim, img_dim))
x = x.astype(np.float32)
return x / 255 * 2 - 1
class img_generator:
"""图片迭代器,方便重复调用
"""
def __init__(self, imgs, batch_size=64):
self.imgs = imgs
self.batch_size = batch_size
if len(imgs) % batch_size == 0:
self.steps = len(imgs) // batch_size
else:
self.steps = len(imgs) // batch_size + 1
def __len__(self):
return self.steps
def __iter__(self):
X = []
while True:
np.random.shuffle(self.imgs)
for i,f in enumerate(self.imgs):
X.append(imread(f))
if len(X) == self.batch_size or i == len(self.imgs)-1:
X = np.array(X)
yield X, None
X = []
def resnet_block(x):
"""残差块
"""
dim = K.int_shape(x)[-1]
xo = x
x = Activation('relu')(x)
x = Conv2D(dim, 3, padding='same')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Conv2D(dim, 1, padding='same')(x)
return Add()([xo, x])
# 编码器
x_in = Input(shape=(img_dim, img_dim, 3))
x = x_in
x = Conv2D(z_dim, 4, strides=2, padding='same')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Conv2D(z_dim, 4, strides=2, padding='same')(x)
x = BatchNormalization()(x)
for i in range(num_layers):
x = resnet_block(x)
if i < num_layers - 1:
x = BatchNormalization()(x)
e_model = Model(x_in, x)
e_model.summary()
# 解码器
z_in = Input(shape=K.int_shape(x)[1:])
z = z_in
for i in range(num_layers):
z = BatchNormalization()(z)
z = resnet_block(z)
z = Conv2DTranspose(z_dim, 4, strides=2, padding='same')(z)
z = BatchNormalization()(z)
z = Activation('relu')(z)
z = Conv2DTranspose(3, 4, strides=2, padding='same')(z)
z = Activation('tanh')(z)
g_model = Model(z_in, z)
g_model.summary()
# 硬编码模型
z_in = Input(shape=K.int_shape(x)[1:])
z = z_in
class VectorQuantizer(Layer):
"""量化层
"""
def __init__(self, num_codes, **kwargs):
super(VectorQuantizer, self).__init__(**kwargs)
self.num_codes = num_codes
def build(self, input_shape):
super(VectorQuantizer, self).build(input_shape)
dim = input_shape[-1]
self.embeddings = self.add_weight(
name='embeddings',
shape=(self.num_codes, dim),
initializer='uniform'
)
def call(self, inputs):
"""inputs.shape=[None, m, m, dim]
"""
l2_inputs = K.sum(inputs**2, -1, keepdims=True)
l2_embeddings = K.sum(self.embeddings**2, -1)
for _ in range(K.ndim(inputs) - 1):
l2_embeddings = K.expand_dims(l2_embeddings, 0)
embeddings = K.transpose(self.embeddings)
dot = K.dot(inputs, embeddings)
distance = l2_inputs + l2_embeddings - 2 * dot
codes = K.cast(K.argmin(distance, -1), 'int32')
code_vecs = K.gather(self.embeddings, codes)
return [codes, code_vecs]
def compute_output_shape(self, input_shape):
return [input_shape[:-1], input_shape]
vq_layer = VectorQuantizer(num_codes)
codes, code_vecs = vq_layer(z)
q_model = Model(z_in, [codes, code_vecs])
q_model.summary()
# 训练模型
x_in = Input(shape=(img_dim, img_dim, 3))
x = x_in
z = e_model(x)
_, e = q_model(z)
ze = Lambda(lambda x: x[0] + K.stop_gradient(x[1] - x[0]))([z, e])
x = g_model(ze)
train_model = Model(x_in, [x, _])
mse_x = K.mean((x_in - x)**2)
mse_e = K.mean((K.stop_gradient(z) - e)**2)
mse_z = K.mean((K.stop_gradient(e) - z)**2)
loss = mse_x + mse_e + 0.25 * mse_z
train_model.add_loss(loss)
train_model.compile(optimizer=Adam(1e-3))
train_model.summary()
train_model.metrics_names.append('mse_x')
train_model.metrics_tensors.append(mse_x)
train_model.metrics_names.append('mse_e')
train_model.metrics_tensors.append(mse_e)
train_model.metrics_names.append('mse_z')
train_model.metrics_tensors.append(mse_z)
# 重构采样函数
def sample_ae_1(path, n=8):
figure = np.zeros((img_dim * n, img_dim * n, 3))
for i in range(n):
for j in range(n):
if j % 2 == 0:
x_sample = [imread(np.random.choice(imgs))]
else:
z_sample = e_model.predict(np.array(x_sample))
x_sample = g_model.predict(z_sample)
digit = x_sample[0]
figure[i * img_dim:(i + 1) * img_dim,
j * img_dim:(j + 1) * img_dim] = digit
figure = (figure + 1) / 2 * 255
figure = np.round(figure, 0).astype('uint8')
imageio.imwrite(path, figure)
# 重构采样函数
def sample_ae_2(path, n=8):
figure = np.zeros((img_dim * n, img_dim * n, 3))
for i in range(n):
for j in range(n):
if j % 2 == 0:
x_sample = [imread(np.random.choice(imgs))]
else:
z_sample = e_model.predict(np.array(x_sample))
z_sample = q_model.predict(z_sample)[1]
x_sample = g_model.predict(z_sample)
digit = x_sample[0]
figure[i * img_dim:(i + 1) * img_dim,
j * img_dim:(j + 1) * img_dim] = digit
figure = (figure + 1) / 2 * 255
figure = np.round(figure, 0).astype('uint8')
imageio.imwrite(path, figure)
# 随机线性插值
def sample_inter(path, n=8):
figure = np.zeros((img_dim * n, img_dim * n, 3))
for i in range(n):
img1, img2 = np.random.choice(imgs, 2)
z_sample_1, z_sample_2 = e_model.predict(np.array([imread(img1), imread(img2)]))
z_sample_1, z_sample_2 = np.array([z_sample_1]), np.array([z_sample_2])
for j in range(n):
alpha = j / (n - 1.)
z_sample = (1 - alpha) * z_sample_1 + alpha * z_sample_2
z_sample = q_model.predict(z_sample)[1]
x_sample = g_model.predict(z_sample)
digit = x_sample[0]
figure[i * img_dim:(i + 1) * img_dim,
j * img_dim:(j + 1) * img_dim] = digit
figure = (figure + 1) / 2 * 255
figure = np.round(figure, 0).astype('uint8')
imageio.imwrite(path, figure)
class Trainer(Callback):
def __init__(self):
self.batch = 0
self.n_size = 9
self.iters_per_sample = 100
def on_batch_end(self, batch, logs=None):
if self.batch % self.iters_per_sample == 0:
sample_ae_1('samples/test_ae_1_%s.png' % self.batch)
sample_ae_2('samples/test_ae_2_%s.png' % self.batch)
train_model.save_weights('./train_model.weights')
self.batch += 1
batch = min(self.batch, 100000.)
if __name__ == '__main__':
trainer = Trainer()
img_data = img_generator(imgs, batch_size)
train_model.fit_generator(img_data.__iter__(),
steps_per_epoch=len(img_data),
epochs=1000,
callbacks=[trainer])
"""
train_model.load_weights('./train_model.weights')
e_model_size = K.int_shape(e_model.outputs[0])[1: -1]
e_model_total_size = np.prod(e_model_size)
from tqdm import tqdm
train_D = img_generator(imgs)
train__D = train_D.__iter__()
train_codes = np.empty((0, e_model_total_size), dtype='int32')
for _ in tqdm(iter(range(len(train_D)))):
d = train__D.next()[0]
c = q_model.predict(e_model.predict(d))[0]
c = c.reshape((c.shape[0], -1))
train_codes = np.vstack([train_codes, c])
train_codes = np.hstack([
np.zeros_like(train_codes[:, :1], dtype='int32'),
train_codes + 1
])
class OurLayer(Layer):
"""定义新的Layer,增加reuse方法,允许在定义Layer时调用现成的层
"""
def reuse(self, layer, *args, **kwargs):
if not layer.built:
if len(args) > 0:
layer.build(K.int_shape(args[0]))
else:
layer.build(K.int_shape(kwargs['inputs']))
self._trainable_weights.extend(layer._trainable_weights)
self._non_trainable_weights.extend(layer._non_trainable_weights)
return layer.call(*args, **kwargs)
class Attention(OurLayer):
"""多头注意力机制
"""
def __init__(self, heads, size_per_head, key_size=None,
mask_right=False, **kwargs):
super(Attention, self).__init__(**kwargs)
self.heads = heads
self.size_per_head = size_per_head
self.out_dim = heads * size_per_head
self.key_size = key_size if key_size else size_per_head
self.mask_right = mask_right
def build(self, input_shape):
super(Attention, self).build(input_shape)
self.q_dense = Dense(self.key_size * self.heads, use_bias=False)
self.k_dense = Dense(self.key_size * self.heads, use_bias=False)
self.v_dense = Dense(self.out_dim, use_bias=False)
def mask(self, x, mask, mode='mul'):
if mask is None:
return x
else:
for _ in range(K.ndim(x) - K.ndim(mask)):
mask = K.expand_dims(mask, K.ndim(mask))
if mode == 'mul':
return x * mask
else:
return x - (1 - mask) * 1e10
def call(self, inputs):
q, k, v = inputs[:3]
v_mask, q_mask = None, None
if len(inputs) > 3:
v_mask = inputs[3]
if len(inputs) > 4:
q_mask = inputs[4]
# 线性变换
qw = self.reuse(self.q_dense, q)
kw = self.reuse(self.k_dense, k)
vw = self.reuse(self.v_dense, v)
# 形状变换
qw = K.reshape(qw, (-1, K.shape(qw)[1], self.heads, self.key_size))
kw = K.reshape(kw, (-1, K.shape(kw)[1], self.heads, self.key_size))
vw = K.reshape(vw, (-1, K.shape(vw)[1], self.heads, self.size_per_head))
# 维度置换
qw = K.permute_dimensions(qw, (0, 2, 1, 3))
kw = K.permute_dimensions(kw, (0, 2, 1, 3))
vw = K.permute_dimensions(vw, (0, 2, 1, 3))
# Attention
a = K.batch_dot(qw, kw, [3, 3]) / self.key_size**0.5
a = K.permute_dimensions(a, (0, 3, 2, 1))
a = self.mask(a, v_mask, 'add')
a = K.permute_dimensions(a, (0, 3, 2, 1))
if self.mask_right:
ones = K.ones_like(a[:1, :1])
mask = (ones - K.tf.matrix_band_part(ones, -1, 0)) * 1e10
a = a - mask
a = K.softmax(a)
# 完成输出
o = K.batch_dot(a, vw, [3, 2])
o = K.permute_dimensions(o, (0, 2, 1, 3))
o = K.reshape(o, (-1, K.shape(o)[1], self.out_dim))
o = self.mask(o, q_mask, 'mul')
return o
def compute_output_shape(self, input_shape):
return (input_shape[0][0], input_shape[0][1], self.out_dim)
from keras_layer_normalization import LayerNormalization
c_in = Input(shape=(None,))
c = c_in
def posid(x):
idx = K.arange(0, K.shape(x)[1])
idx = K.expand_dims(idx, 0)
idx = K.tile(idx, [K.shape(x)[0], 1])
return idx
c_pid = Lambda(posid)(c)
c_row_pid = Lambda(lambda x: x // e_model_size[0])(c_pid)
c_col_pid = Lambda(lambda x: x % e_model_size[1])(c_pid)
def build_att(c):
co = c
c = Attention(8, 32, mask_right=True)([c, c, c])
c = Dense(z_dim * 2, activation='relu')(c)
return Add()([c, co])
c = Embedding(num_codes + 1, z_dim * 2)(c)
c_row_p = Embedding(e_model_size[0], z_dim * 2)(c_row_pid)
c_col_p = Embedding(e_model_size[1], z_dim * 2)(c_col_pid)
c = Add()([c, c_row_p, c_col_p])
c = LayerNormalization()(c)
c = build_att(c)
c = LayerNormalization()(c)
c = build_att(c)
c = LayerNormalization()(c)
c = build_att(c)
c = LayerNormalization()(c)
c = build_att(c)
c = LayerNormalization()(c)
c = Dense(num_codes, activation='softmax')(c)
c_model = Model(c_in, c)
c_model.summary()
c_model.compile(
loss='sparse_categorical_crossentropy',
optimizer='adam'
)
c_model.fit(
train_codes[:, :-1],
np.expand_dims(train_codes[:, 1:] - 1, 2),
batch_size=32,
epochs=1000
)
def random_sample_code(n=1):
c_sample = np.zeros((n, e_model_total_size + 1), dtype='int32')
for i in tqdm(iter(range(e_model_total_size))):
p = c_model.predict(c_sample[:, :i+1])[:, -1]
for j in range(n):
k = np.random.choice(num_codes, p=p[j])
c_sample[j, i+1] = k + 1
return c_sample[:, 1:].reshape((-1, e_model_size[0], e_model_size[1])) - 1
def code2vec(codes):
vecs = K.gather(vq_layer.embeddings, codes)
return K.eval(vecs)
# 随机采样
def sample(path, n=8):
figure = np.zeros((img_dim * n, img_dim * n, 3))
codes = random_sample_code(n**2)
for i in range(n):
for j in range(n):
z_sample = code2vec(codes[[i * n + j]])
z_sample = q_model.predict(z_sample)[1]
x_sample = g_model.predict(z_sample)
digit = x_sample[0]
figure[i * img_dim:(i + 1) * img_dim,
j * img_dim:(j + 1) * img_dim] = digit
figure = (figure + 1) / 2 * 255
figure = np.round(figure, 0).astype('uint8')
imageio.imwrite(path, figure)
"""