coco/
thing_train2017/
# thing class label maps for auxiliary semantic loss
lvis/
thing_train/
# semantic labels for LVIS
Run python prepare_thing_sem_from_instance.py
, to extract semantic labels from instance annotations.
Run python prepare_thing_sem_from_lvis.py
, to extract semantic labels from LVIS annotations.
English pretrained data:
- Totaltext training, testing images, and annotations [link] [paper] [code].
- CTW1500 training, testing images, and annotations [link] [paper] [code].
- MLT [dataset] [paper].
- Syntext-150k:
Chinese pretrained data:
- ReCTs [images&label](1.7G) [Origin_of_dataset]
- ReCTs test set [images&empty_label](0.5G) [Origin_of_dataset]
- LSVT [images&label](8.2G) [Origin_of_dataset]
- ArT [images&label](1.5G) [Origin_of_dataset]
- SynChinese130k [images&label](25G) [Origin_of_dataset]
text/
totaltext/
annotations/
train_images/
test_images/
mlt2017/
annotations/train.json
images/
...
syntext1/
syntext2/
...
evaluation/
gt_ctw1500.zip
gt_totaltext.zip
To evaluate on Total Text and CTW1500, first download the zipped annotations with
mkdir evaluation
cd evaluation
wget -O gt_ctw1500.zip https://cloudstor.aarnet.edu.au/plus/s/xU3yeM3GnidiSTr/download
wget -O gt_totaltext.zip https://cloudstor.aarnet.edu.au/plus/s/SFHvin8BLUM4cNd/download
pic/
thing_train/
# thing class label maps for auxiliary semantic loss
annotations/
train_person.json
val_person.json
image/
train/
...
First link the PIC_2.0 dataset to this folder with ln -s \path\to\PIC_2.0 pic
. Then use the python gen_coco_person.py
to generate train and validation annotation jsons.
Run python prepare_thing_sem_from_instance.py --dataset-name pic
, to extract semantic labels from instance annotations.