forked from n-waves/multifit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsplit-cls.py
52 lines (43 loc) · 1.88 KB
/
split-cls.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import pandas as pd, numpy as np
import fire
from pathlib import Path
from sys import stderr
from sklearn.model_selection import train_test_split
import re
def to_csv(df, path):
df.to_csv(path, header=None, index=None)
def remove_rt(df):
return df.assign(text=df.text.str.replace('^RT @anonymized_account ',''))
def remove_duplicates(df):
exact = df[~df.duplicated('text')]
prefixes = exact.text.map(lambda t: t.endswith('…') and exact.text.str.startswith(t[:-1]).sum()>1)
return exact[~prefixes]
def cross_remove_duplicates(from_df, other_df):
exact = from_df[~from_df.text.isin(other_df.text)]
other_prefixes = other_df.text[other_df.text.str.endswith('…')].str[:-1]
if len(other_prefixes):
other_prefixes_re = re.compile('^'+'|'.join([f'({re.escape(t)})' for t in other_prefixes]))
else:
other_prefixes_re = re.compile('^$')
prefixes = exact.text.map(lambda t:
(t.endswith('…') and other_df.text.str.startswith(t[:-1]).any()) or
other_prefixes_re.match(t) is not None
)
return exact[~prefixes]
def split(data_dir, dedup=False):
data_dir = Path(data_dir)
train = pd.read_csv(data_dir / "pl.unsup.csv", header=None, names=["label", "text"])
val_ratio = 0.1
train = remove_rt(train)
trn, val = train_test_split(train, test_size=val_ratio, random_state=12345, stratify=train.label)
if dedup:
trn = remove_duplicates(trn)
val = remove_duplicates(val)
val = cross_remove_duplicates(val, trn)
l1, l2, l3 = len(remove_duplicates(train)), len(trn), len(val)
if l1 != l2 + l3:
print("Warning: some condition believed by me to be invariant is not hold")
print(f"{l1} should be equal to {l2} + {l3} = {l2+l3}")
to_csv(trn, data_dir / "pl.train.csv")
to_csv(val, data_dir / "pl.dev.csv")
if __name__ == "__main__": fire.Fire(split)